Species | Desulfovibrio sp900540515 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Desulfobacterota; Desulfovibrionia; Desulfovibrionales; Desulfovibrionaceae; Desulfovibrio; Desulfovibrio sp900540515 | |||||||||||
CAZyme ID | MGYG000002846_01045 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 68312; End: 69553 Strand: - |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 4 | 178 | 5.8e-28 | 0.9823529411764705 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd04186 | GT_2_like_c | 3.09e-48 | 5 | 218 | 1 | 166 | Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
COG1216 | GT2 | 3.36e-35 | 1 | 249 | 3 | 248 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]. |
pfam00535 | Glycos_transf_2 | 8.65e-29 | 4 | 176 | 1 | 164 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
cd00761 | Glyco_tranf_GTA_type | 1.69e-25 | 5 | 204 | 1 | 152 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
cd02522 | GT_2_like_a | 8.48e-18 | 3 | 203 | 1 | 173 | GT_2_like_a represents a glycosyltransferase family-2 subfamily with unknown function. Glycosyltransferase family 2 (GT-2) subfamily of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
AMD91297.1 | 1.40e-233 | 1 | 408 | 1 | 407 |
QCC84451.1 | 3.59e-162 | 2 | 408 | 6 | 407 |
ATD82460.1 | 1.11e-159 | 2 | 408 | 5 | 410 |
SPD35250.1 | 1.11e-159 | 2 | 408 | 5 | 410 |
VZH33992.1 | 7.25e-158 | 2 | 408 | 22 | 471 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
6P61_A | 2.15e-07 | 3 | 94 | 15 | 102 | Structureof a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_B Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_C Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197],6P61_D Structure of a Glycosyltransferase from Leptospira borgpetersenii serovar Hardjo-bovis (strain JB197) [Leptospira borgpetersenii serovar Hardjo-bovis str. JB197] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P55465 | 5.29e-24 | 3 | 240 | 627 | 867 | Uncharacterized protein y4gI OS=Sinorhizobium fredii (strain NBRC 101917 / NGR234) OX=394 GN=NGR_a03550 PE=4 SV=1 |
Q50864 | 1.29e-18 | 2 | 219 | 575 | 795 | O-antigen biosynthesis protein RfbC OS=Myxococcus xanthus OX=34 GN=rfbC PE=4 SV=1 |
P46370 | 3.95e-09 | 30 | 206 | 153 | 319 | Uncharacterized 55.3 kDa protein in thcA 5'region OS=Rhodococcus erythropolis OX=1833 PE=4 SV=1 |
O06483 | 2.24e-08 | 1 | 94 | 1 | 91 | Uncharacterized glycosyltransferase YfnE OS=Bacillus subtilis (strain 168) OX=224308 GN=yfnE PE=3 SV=2 |
Q15JF5 | 5.84e-07 | 3 | 212 | 42 | 268 | Validoxylamine A glucosyltransferase OS=Streptomyces hygroscopicus subsp. limoneus OX=264445 GN=vldK PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000048 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.