Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Rikenellaceae; ; | |||||||||||
CAZyme ID | MGYG000004172_01805 | |||||||||||
CAZy Family | GT2 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 39895; End: 40803 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GT2 | 5 | 174 | 2.7e-25 | 0.9705882352941176 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
pfam00535 | Glycos_transf_2 | 2.06e-27 | 5 | 174 | 1 | 164 | Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids. |
cd00761 | Glyco_tranf_GTA_type | 9.26e-26 | 6 | 213 | 1 | 156 | Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities. |
COG1216 | GT2 | 2.19e-22 | 1 | 232 | 2 | 231 | Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism]. |
cd04186 | GT_2_like_c | 4.71e-22 | 6 | 220 | 1 | 164 | Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families. |
COG0463 | WcaA | 5.52e-21 | 1 | 274 | 2 | 282 | Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis]. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
BCG54097.1 | 1.23e-119 | 2 | 300 | 15 | 313 |
QGA23906.1 | 9.77e-111 | 3 | 302 | 3 | 302 |
BBL03370.1 | 1.90e-110 | 3 | 300 | 3 | 298 |
BBL15447.1 | 1.54e-109 | 3 | 300 | 3 | 298 |
BBL07044.1 | 4.02e-94 | 1 | 302 | 1 | 296 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2Z86_A | 2.53e-07 | 4 | 226 | 95 | 335 | Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli] |
2Z87_A | 2.53e-07 | 4 | 226 | 94 | 334 | Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
D4GYH3 | 1.33e-09 | 3 | 245 | 2 | 241 | Glucosyl-dolichyl phosphate glucuronosyltransferase OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=aglG PE=1 SV=1 |
D4GYG7 | 1.36e-08 | 5 | 104 | 9 | 107 | Glycosyltransferase AglE OS=Haloferax volcanii (strain ATCC 29605 / DSM 3757 / JCM 8879 / NBRC 14742 / NCIMB 2012 / VKM B-1768 / DS2) OX=309800 GN=aglE PE=1 SV=1 |
P71057 | 3.02e-07 | 5 | 108 | 7 | 106 | Putative glycosyltransferase EpsH OS=Bacillus subtilis (strain 168) OX=224308 GN=epsH PE=2 SV=1 |
P33697 | 9.80e-07 | 3 | 123 | 11 | 120 | Succinoglycan biosynthesis protein ExoO OS=Rhizobium meliloti (strain 1021) OX=266834 GN=exoO PE=3 SV=2 |
Q15JF5 | 1.19e-06 | 4 | 105 | 42 | 142 | Validoxylamine A glucosyltransferase OS=Streptomyces hygroscopicus subsp. limoneus OX=264445 GN=vldK PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000051 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.