logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000004650_01433

You are here: Home > Sequence: MGYG000004650_01433

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Marinifilaceae; Odoribacter;
CAZyme ID MGYG000004650_01433
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
402 46244.65 7.5663
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000004650 2976949 MAG China Asia
Gene Location Start: 5719;  End: 6927  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000004650_01433.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 235 365 7.9e-17 0.9

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03825 GT4_WcaC-like 9.63e-63 1 396 1 362
putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Escherichia coli WcaC has been predicted to function in colanic acid biosynthesis. WcfI in Bacteroides fragilis has been shown to be involved in the capsular polysaccharide biosynthesis.
cd03801 GT4_PimA-like 2.05e-26 2 396 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.21e-24 1 398 3 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd04962 GT4_BshA-like 3.46e-20 184 395 145 367
N-acetyl-alpha-D-glucosaminyl L-malate synthase BshA and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in bacteria, while some of them are also found in Archaea and eukaryotes.
pfam13692 Glyco_trans_1_4 2.48e-17 247 362 11 135
Glycosyl transferases group 1.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUT47988.1 5.21e-145 1 395 1 395
CUH92839.1 2.77e-109 1 399 1 398
QUE87221.1 2.54e-105 1 398 1 396
BCJ94688.1 1.43e-102 1 398 1 398
QJU20223.1 1.95e-100 1 395 6 402

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2JJM_A 7.00e-12 184 395 160 382
CrystalStructure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_B Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_C Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_D Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_E Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_F Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_G Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_H Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_I Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_J Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_K Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames],2JJM_L Crystal Structure of a family GT4 glycosyltransferase from Bacillus anthracis ORF BA1558. [Bacillus anthracis str. Ames]
3MBO_A 7.52e-12 184 395 180 402
CrystalStructure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_B Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_C Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_D Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_E Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_F Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_G Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis],3MBO_H Crystal Structure of the Glycosyltransferase BaBshA bound with UDP and L-malate [Bacillus anthracis]
5D00_A 4.98e-10 200 395 164 372
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
6N1X_A 2.01e-07 184 347 149 321
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]
6D9T_A 2.13e-07 184 347 165 337
BshAfrom Staphylococcus aureus complexed with UDP [Staphylococcus aureus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q81ST7 3.63e-11 184 395 147 369
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus anthracis OX=1392 GN=bshA PE=1 SV=1
P42982 2.71e-09 200 395 162 370
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2
A1UAM8 3.24e-09 210 378 206 389
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium sp. (strain KMS) OX=189918 GN=mshA PE=3 SV=1
A3PU84 3.24e-09 210 378 206 389
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium sp. (strain JLS) OX=164757 GN=mshA PE=3 SV=1
Q1BEA6 3.24e-09 210 378 206 389
D-inositol 3-phosphate glycosyltransferase OS=Mycobacterium sp. (strain MCS) OX=164756 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000037 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000004650_01433.