NCBI resources II: web-based tools and ftp

resources

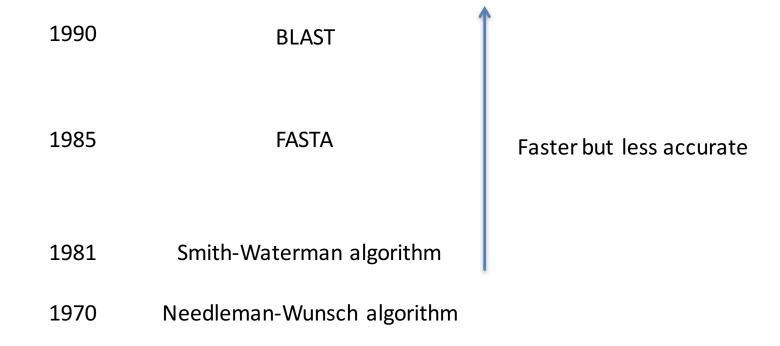
Yanbin Yin

Most materials are downloaded from ftp://ftp.ncbi.nih.gov/pub/education/

Outline

- Tools
 - BLAST
 - Specialized BLAST
 - GEO
- ftp download
- Hands on exercise

References


NCBI discovery workshops

ftp://ftp.ncbi.nih.gov/pub/education/discover
y_workshops/NLM/2012/Sept2012/

http://homepages.ulb.ac.be/~dgonze/TEACHI NG/stat_scores.pdf

http://www.bioinformatics.wsu.edu/bioinfo_c
ourse/notes/lecture6.pdf

Evolution of pairwise alignment tools

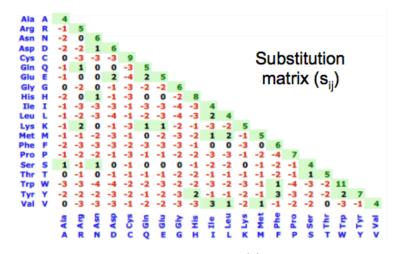
Basic Local Alignment Search Tool

- Widely used similarity search tool
- Heuristic approach based on Smith Waterman algorithm
- Finds best local alignments
- Provides statistical significance
- All combinations (DNA/Protein) query and database
 - DNA vs DNA
 - DNA translation vs Protein
 - Protein vs Protein
 - Protein vs DNA translation
 - DNA translation vs DNA translation
- www, standalone, and network client

Why is BLAST Necessary?

- § Theoretically, one could perform a Global (or Local) Alignment between a query sequence and each protein or DNA sequence in a database
 - Such an approach would be very computationally intensive and not practical for most purposes
- § BLAST approximates this methods in a heuristic
 - BLAST is significantly faster than other heuristic methods
 - BLAST is also more sensitive and selective than other heuristics

§ BLAST disadvantages:


- Misses some homology relations
- Does not guarantee optimal alignment

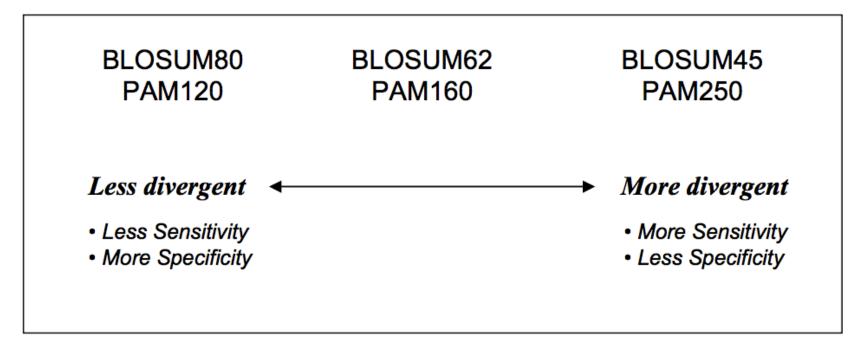
Score: A number used to assess the biological relevance of a finding.

In the context of sequence alignments, a score is a numerical value that describes the overall quality of an alignment. Higher numbers correspond to higher similarity. The score scale depends on the scoring system used (substitution matrix, gap penalty).

$$S = \sum_{i=1}^{L} s_{r_{1,i}r_{2,i}}$$

Example:

gap penalty (s_{i-})


gap opening -4

gap extension -1

end gap

Matrix Choice

- § Good options include BLOSUM62 and PAM250
- § For PAM(X), higher X detects more divergent sequences
- § For BLOSUM(Y), lower Y detects more divergent sequences

E-values

- § Scores are reported by BLAST for each high-scoring segment pair (HSP) as E-values
- § E-values approximate the number of HSPs with score **S** (or greater) that are expected by chance (i.e. not relevant)
- § E-values are calculated using the following formula:

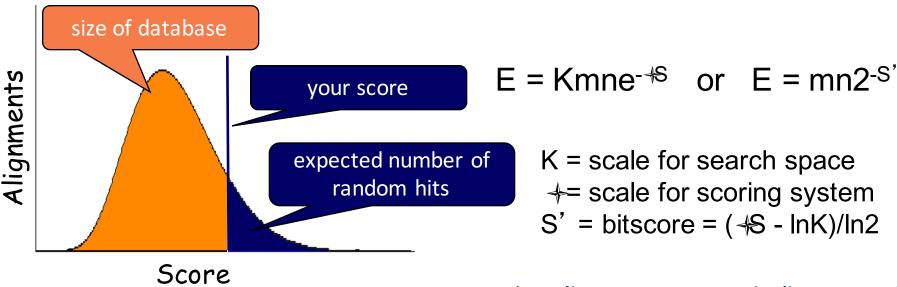
$$E(S) = Kmne^{-\lambda S}$$

K = estimated parameter

m = total length of sequences in database

n =length of query sequence

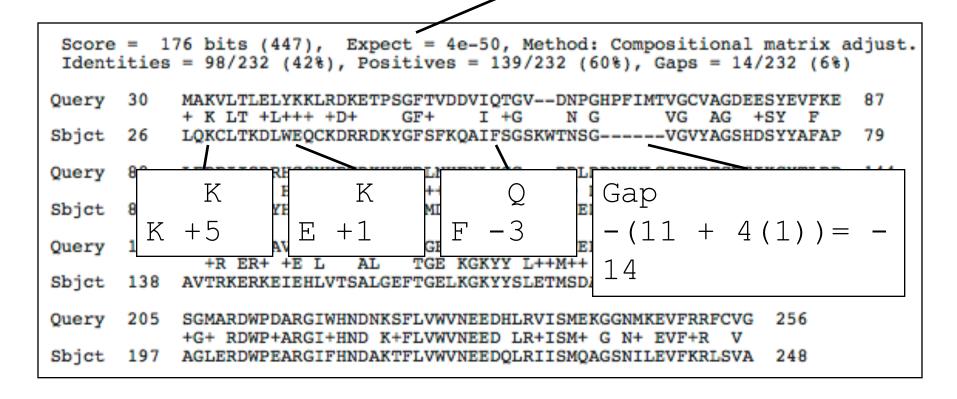
 λ = estimated parameter


S = score of the high-scoring segment pair (HSP)

Local Alignment Statistics

High scores of local alignments between two random sequences follow the Extreme Value Distribution

Expect Value


E = number of database hits you expect to find by chance

(applies to ungapped alignments)

Local Alignment Scoring: Protein

Number of Chance Alignments = 4 X 10⁻⁵⁰

Scores from BLOSUM62, a position independent matrix

Local Alignment Scoring: Nucleotide

Number of Chance Alignments = 2×10^{-73}

```
288 bits (318),
                           Expect = 2e-73
Identities = 262/325 (81%), Gaps = 8/325 (2%)
 Strand=Plus/Plus
       1923
                                                                             1981
Query
Sbict
       33774
                                                                             33832
                                                                             2041
Query
                CTTTTTCGTTGGTGTAA
       Match=+2
Sbjct
                                                                             33892
                            Mismatch=-3
Query
                                                                             2100
       2042
Sbjct
       33893
                                                                             33952
       2101
                                                                             2159
Query
                             Gap
Sbjct
       33953
                                                                             34012
Query
       2160
                                                                  TGTGGGCTA
                                                                             2219
Sbjct
       34013
                                                                             34072
Query
       2220
                                         2240
Sbjct
       34073
                                         34097
```

BLAST and BLAST-like programs

- Traditional BLAST (formerly blastall) nucleotide, protein, translations
 - blastn nucleotide query vs. nucleotide database
 - blastp protein query vs. protein database
 - blastx nucleotide query vs. protein database
 - tblastn protein query vs. translated nucleotide database
 - tblastx translated query vs. translated database
- Megablast nucleotide only
 - Contiguous megablast
 - Nearly identical sequences
 - Discontiguous megablast
 - Cross-species comparison

Position-specific BLAST Programs

(protein only)

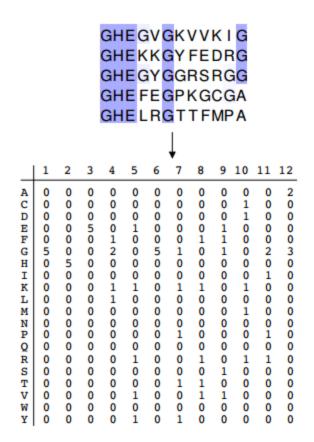
Position Specific Iterative BLAST (PSI-BLAST)

Automatically generates a position specific score matrix (PSSM)

Position-Hit Initiated BLAST (PHI-BLAST)

Focuses search around pattern (motif)

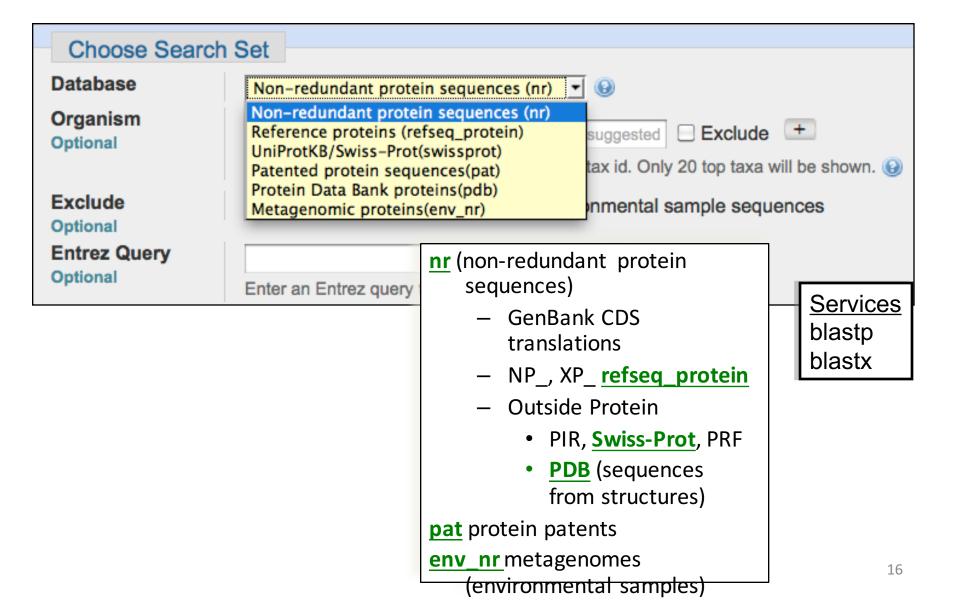
Domain Enhanced Lookup Time Accelerated (DELTA) BLAST

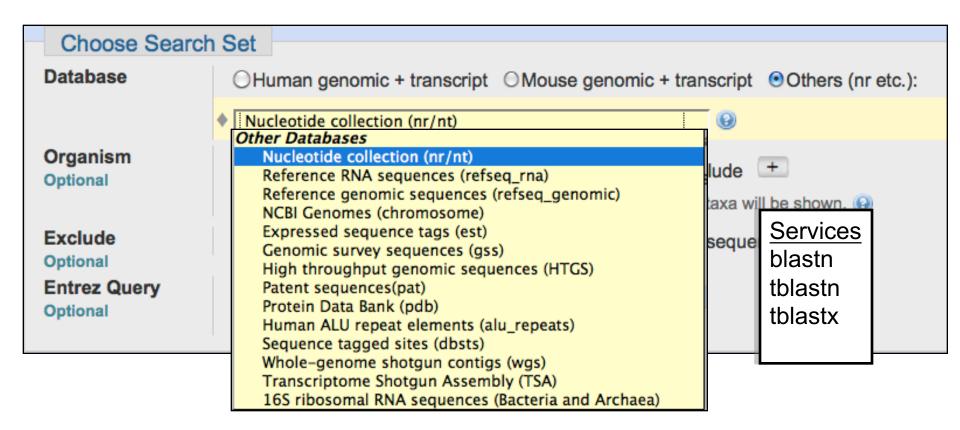

Uses domain PSSM in first round of search

Reverse PSI-BLAST (RPS-BLAST)

Searches a database of PSI-BLAST PSSMs

Conserved Domain Database Search


PSSM: frequencies


$$f_{A,1} = \frac{0}{5} = 0, f_{G,1} = \frac{5}{5} = 1, \dots$$

 $f_{A,2} = \frac{0}{5} = 0, f_{H,2} = \frac{5}{5} = 1, \dots$
...
$$f_{A,12} = \frac{2}{5} = 0.4, f_{G,12} = \frac{3}{5} = 0.6, \dots$$

LC/MP-SIB-07 - p.24/8

Non-redundant protein

Nucleotide Databases: Traditional

Nucleotide Databases: Traditional

Databases are mostly non-overlapping

nr (nt)

- Traditional GenBank
- NM_ and XM_ RefSeqs
 - refseq_rna

NCBI Genomes

- NC_ RefSeqs
- GenBank Chromosomes

dbest

- EST Division
 - non-human, nonmouse ests

htgs

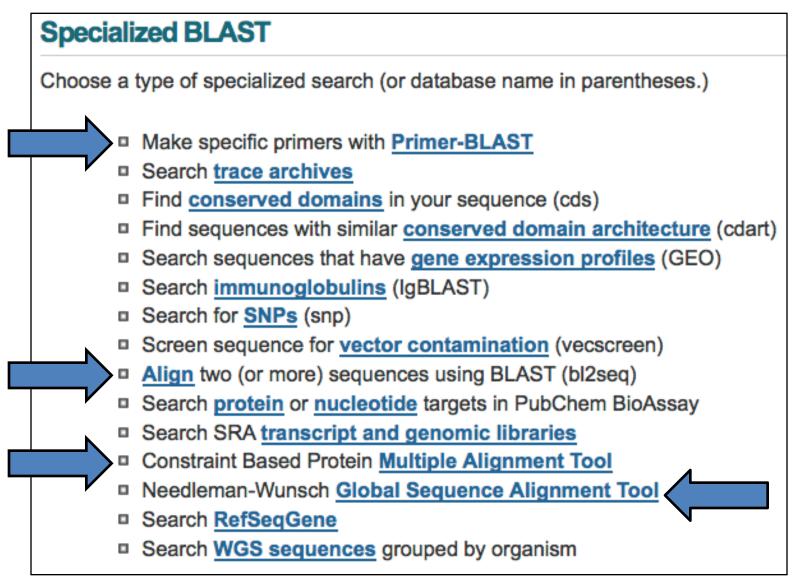
HTG division

gss

GSS division

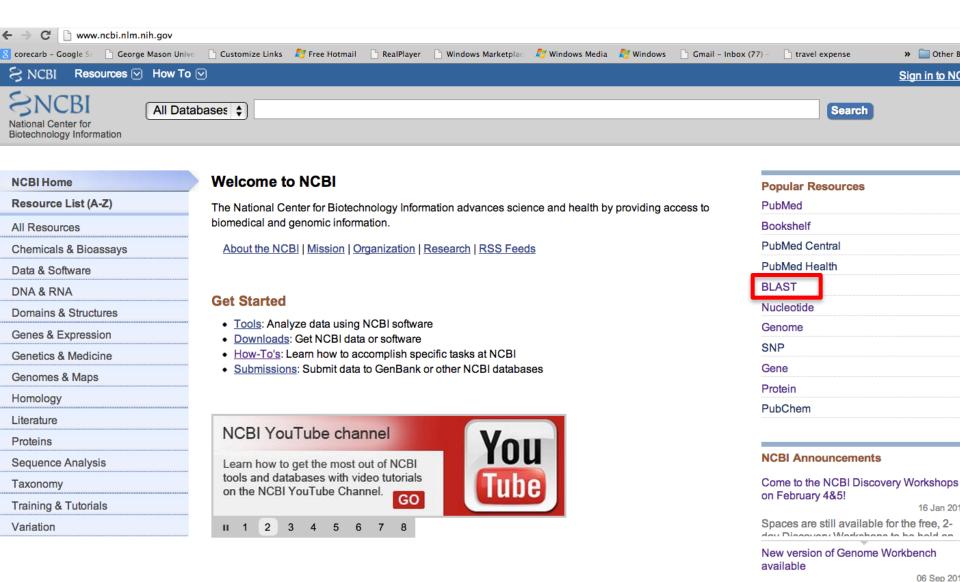
• wgs

whole genome shotgun contigs


tsa

transcriptome shotgun assembly

16S microbial


Selected 16S sequences (targeted loci)

Specialized BLAST Pages

Hands on exercise 1

blastn and megablast

An integrated, downloadable application

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance.

Learn more

Introducing: Magic-BLAST

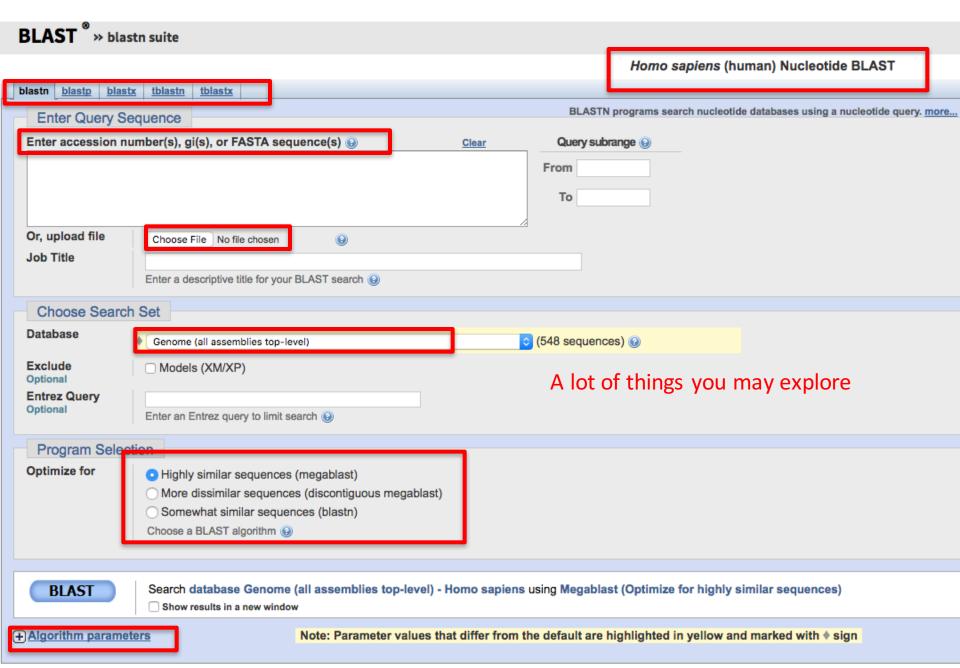
Magic-BLAST is a new tool for mapping large sets of next-generation RNA or DNA sequencing runs against a whole genome or transcriptome.

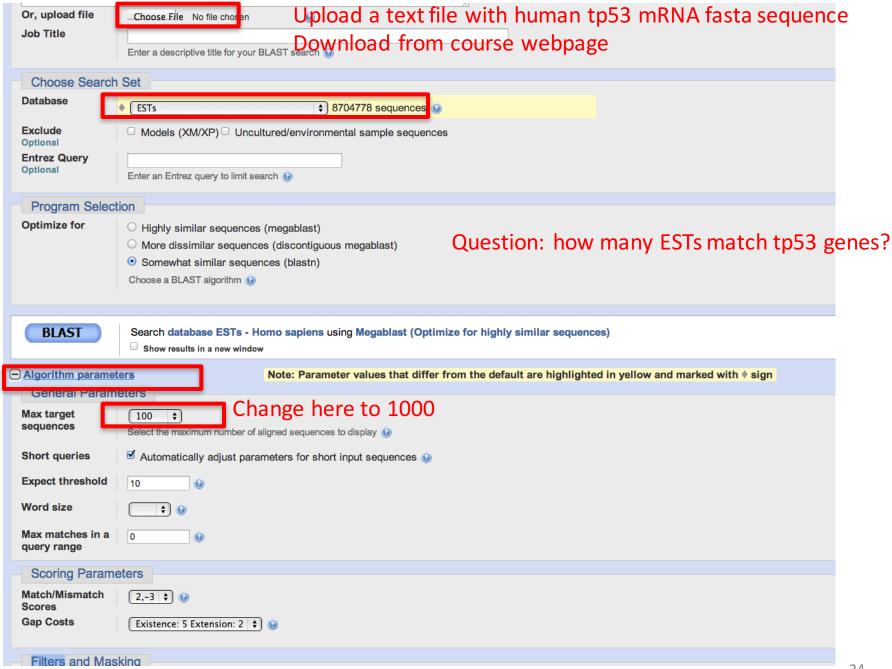
Wed, 24 Aug 2016 11:00:00 EST

More BLAST news...

Web BLAST

BLAST Genomes


Search against human database


Standalone and API BLAST

My NCBI [Sign In] [Regist

Save Search Strategies ▶ Formatting options Edit and Resubmit ▶ Download Change the result display back to traditional format You Tilbe Learn about the enhanced report Blast report description

gi|371502114|ref|NM 000546.5| Homo sapiens

Ouerv ID |cl|39445

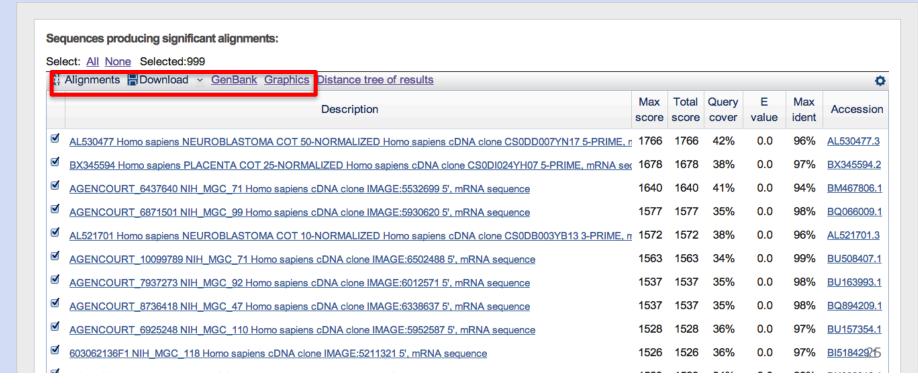
Description qi|371502114|ref|NM 000546.5| Homo sapiens tumor protein

p53 (TP53), transcript variant 1, mRNA

Molecule type nucleic acid Query Length 2591

Other reports: ▶ Search Summary Taxonomy reports] [Distance tree of results] Database Name ESTs

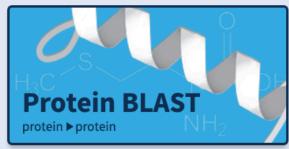
Description Homo sapiens ESTs


Program BLASTN 2.2.27+ ▶ Citation

A lot of things you may explore!!!

H Graphic Summary

Descriptions


Provide feedback on the new report

Web BLAST

BLAST Genomes

Search against other refseq genomes

Hands on exercise 2

Protein blast (blastp and tblastn)

Basic Local Alignment Search Tool

BLAST finds regions of similarity between biological sequences. The program compares nucleotide or protein sequences to sequence databases and calculates the statistical significance. Learn more

Introducing: Magic-BLAST

Magic-BLAST is a new tool for mapping large sets of next-generation RNA or DNA sequencing runs against a whole genome or transcriptome.

Wed, 24 Aug 2016 11:00:00 EST

More BLAST news...

Web BLAST

If not select organisms ...

blastx

N E W

translated nucleotide ▶ protein

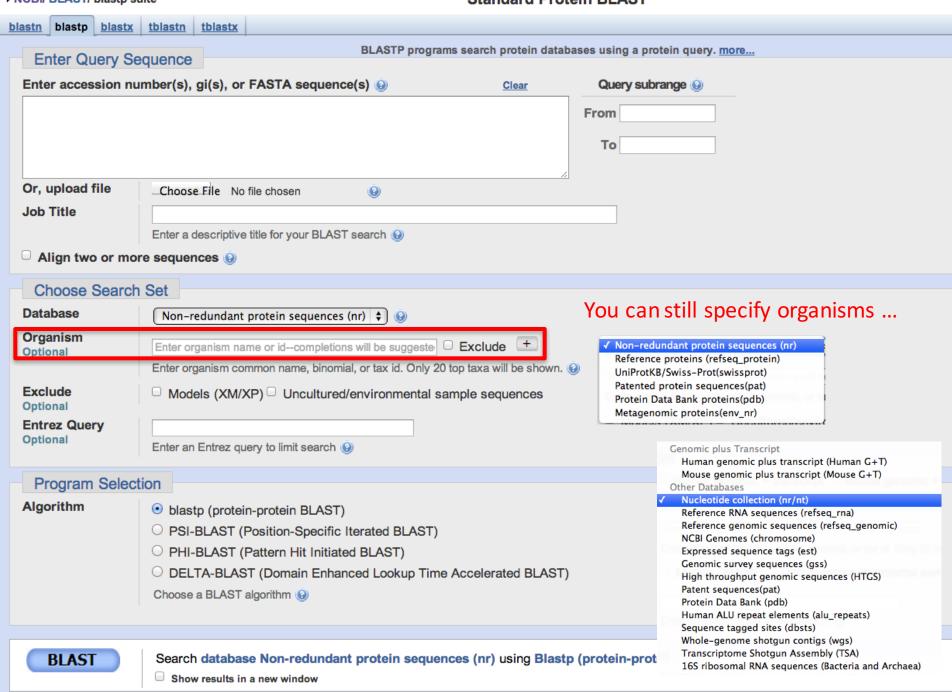
tblastn

protein ▶ translated nucleotide

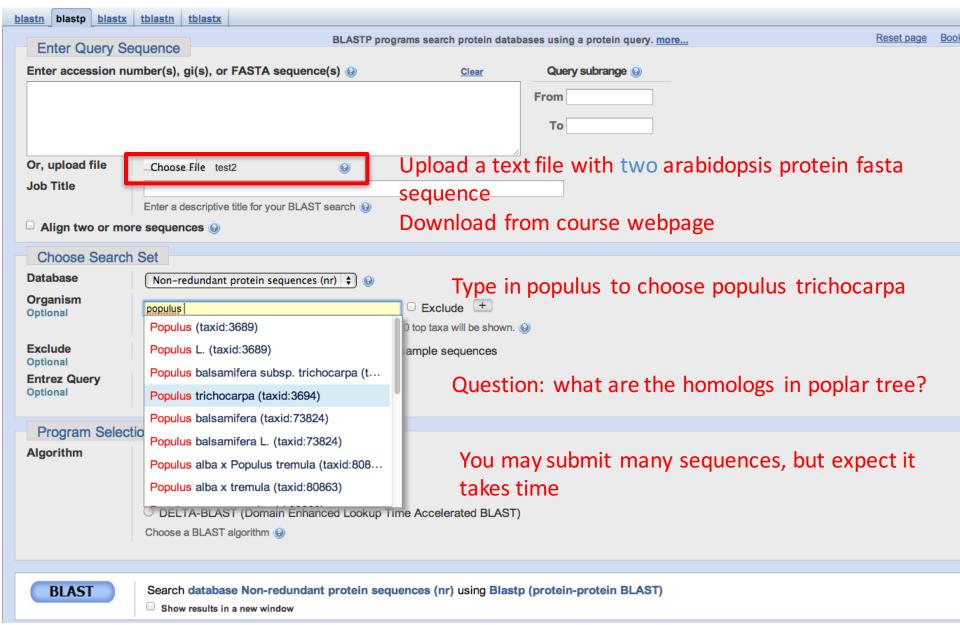
BLAST Genomes

Enter organism common name, scientific name, or tax id

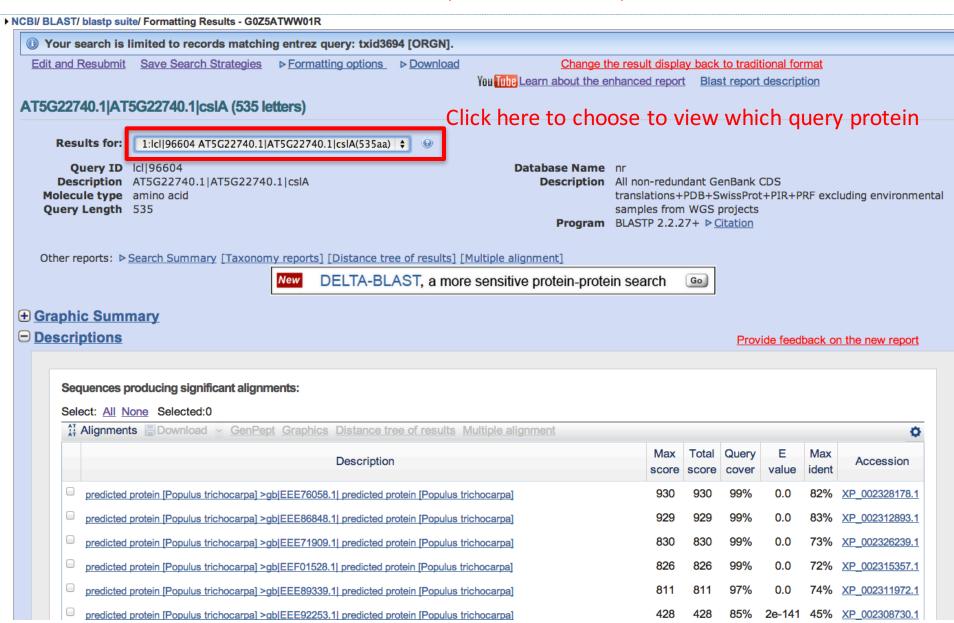
Search


Human

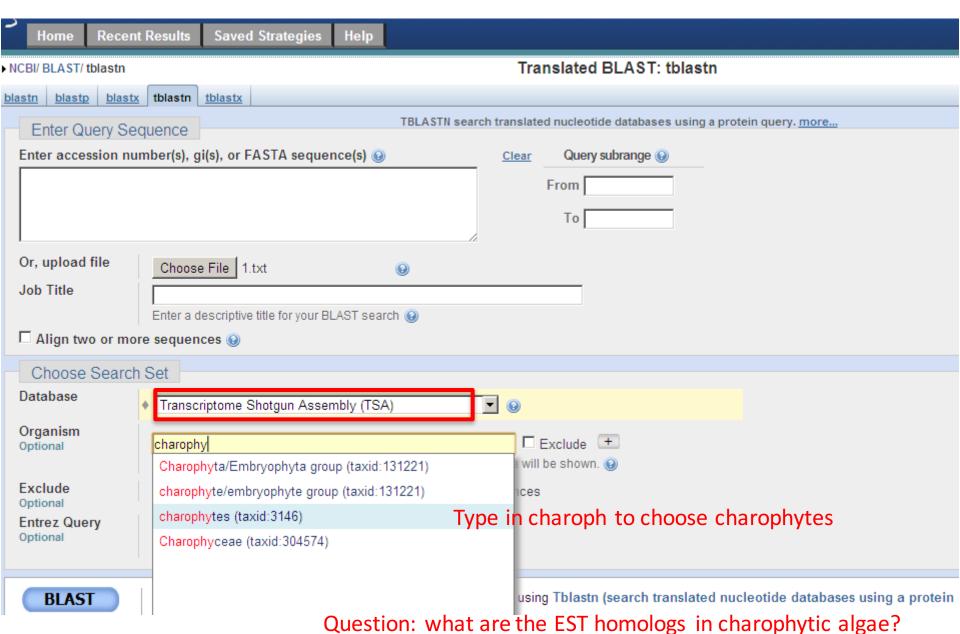
Mouse

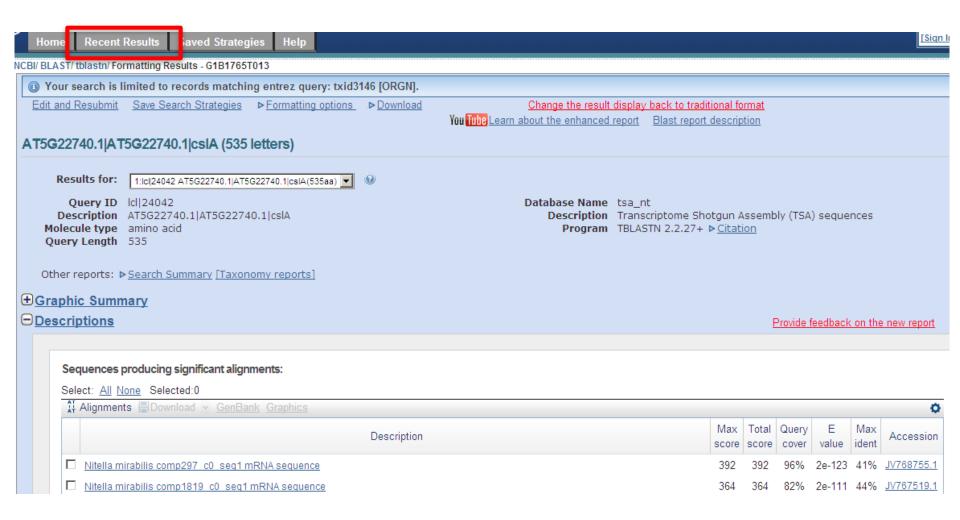

Rat

Microbes


Standard Protein BLAST

Standard Protein BLAST




It took ~1 minute (smaller database)

How to determine what is a good e-value cutoff to select homologs?

http://www.youtube.com/watch?v=nO0wJgZRZJs&list =PL8FD4CC12DABD6B39&index=6

■Download v GenBank Graphics

TSA: Nitella mirabilis comp297_c0_seq1 mRNA sequence Sequence ID: gb|JV768755.1| Length: 3278 Number of Matches: 1

Range 1	1: 305 to	1849 GenBank Graphics		ext Match 🛕 Pr	evious Match
		Expect Method 8) 2e-123 Compositional matrix adjust.	Identities 212/521(41%)	Positives 310/521(59)	Gaps %) 11/521(2
Query	9	VLPETFDGVRMEITGQLGMIWELVKAPVIVPLLQLA			68
Sbjct	1849	VLTAPLAGV-AELFAGLTASFRSFRARHVAPVMÕSV			1673
Query	69	VKLF-WKKPDKRYKFEPIHDDEELGSSNFPVV			123
Sbjct	1672	L WK K P D + L + +P V. FSLTGWKARKVTPLVTHHPRKDADNLSTKTEVYPRV.	L+Q1PMFNERECYQ	ISISACSQLD	1493
Query	124	WPSDRLVIQVLDDSTDPTVKQMVEVECQRWASKGIN			183
Sbjct	1492	WP D+LVIQVLDDS + +K+MV+ E +W S+G+N WPRDKLVIQVLDDSNNEEIKEMVKEEVSKWQSRGVN			1313
Query	184	YVKHCEYVVIFDADFQPEPDFLRRSIPFLMHNPNIA			243
Sbjct	1312	YVK C++V +FDADFQP D+L +++P+ +P + : YVKDCDFVAVFDADFQPRADWLLQTVPYFKDDPKLG			1133
Query	244	DYHFTVEQEVGSSTHAFFGFNGTAGIWRIAAINEAG			303
Sbjct	1132	YHF VEQ+V +T FFGFNGT GIWR+AA+N+ G SYHFEVEQQVMGATMNFFGFNGTGGIWRVAAVNDCG			953
Query	304	LYLGDLQVKSELPSTFRAFRFQQHRWSCGPANLFRK	MVMEIVRNKKVRFW	KKVYVIYSFF	363
Sbjct	952	++L ++V ELP T A+ QQHRW GP NLFR VFLNHVRVPCELPQTLEAYTRQQHRWHAGPMNLFRI	+ +1VK+K + F LAPKIVRSKSLTFA	SKFHLIVLFF	773
Query	364	FVRKIIAHWVTFCFYCVVLPLTILVPEVKVPIWGSV FVR+++ V F + V+LPL++ VPE +PIW +			423
Sbjct	772	FVRTLLVPTVNFLLFVVLLPLSLFVPEANIPIWVTY		P +F + PTLFPYMFPY	593
Query	424	ILFENVMSLHRTKATLIGLFEAGRANEWVVTAKLGS			483
Sbjct	592	+ FEN M + + A + GLF+ GR NEWVVTAK+G+ LFFENTMVMTKLSANIQGLFQFGRVNEWVVTAKVGA			428
Query	484	NTLELGFAAFLFVCGCYDFVHGKNNYFIYLFLQTMS	FFISG 524		
Sbjct	427	EL +AFL + K +F Q ++ FKRELLMSAFLLLAAIQSLAIEKGIHFYIFLFQGLT			

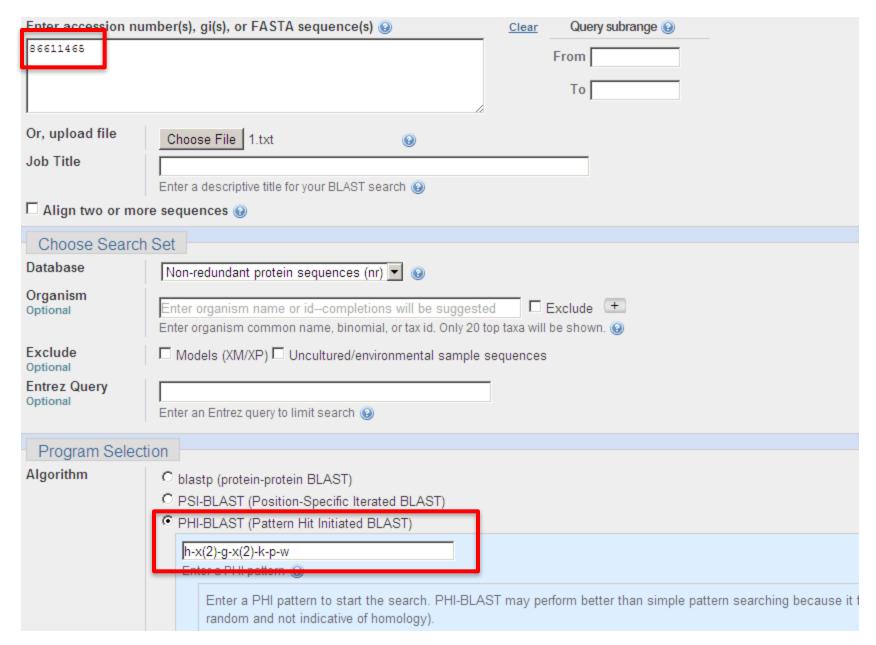
Hands on exercise 3

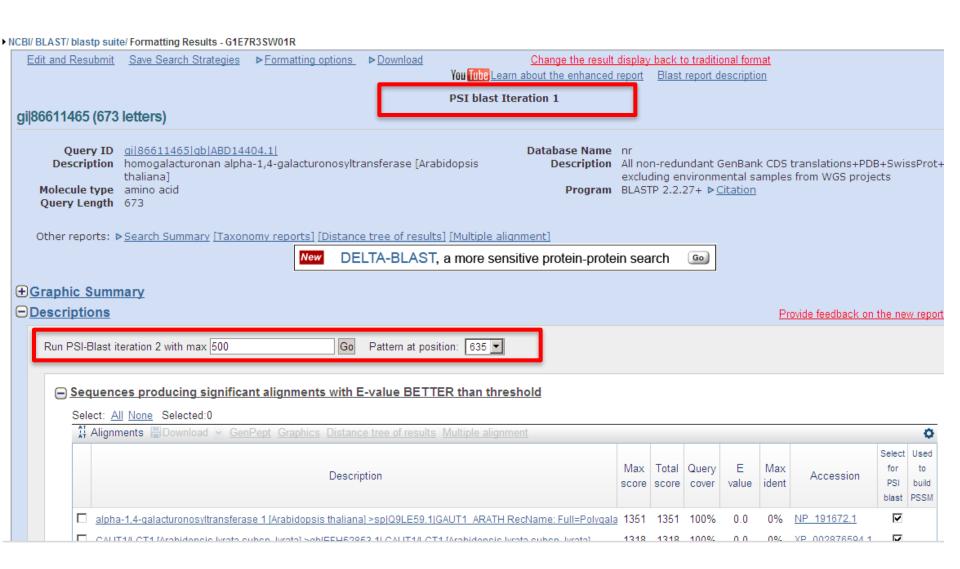
PHI-BLAST

Query protein + short motif/pattern

&

PSI-BLAST (iterated BLAST)


Multi-round BLASTP


Example: plant glycosyltransferase family 8 (GT8) has signature motif

We want to search Arabidopsis GAUT1 protein (gi #: 86611465) and the HXXGXXKPW motif

GT8 Class	Clade	DxD	HxxGxxKPW	
	Position	between a5 and b6	after b10	
	GAUT	KYZELDDDYVVQkDL	H⊻NG⋈⋈KPWL	
T	GATL	RYJYLDSDexxyDDJ	HWsgkgkpW	
-	GATR	R FIYLDSDTPLJVYKGBZ	HFNGKEKPWK	
	Metazoan-1	KOTY6DDDVIVQ _{atsgwlnl} gDI	HWNGHEKEWA	
	Metazoan-2	₽ŸŢŶŸ <mark>DID</mark> ĂĨ £™ ₽₽Ŷ	HWNSESKHEYK	
	GolS	KMIYLD&DIQVE#NI	HYCAAGSKPWB	
II	PGSIP-A	ĸĸĸĿĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ	HYLGLKPWLC	
	PGSIP-B	KVVYLDADTIVVKSI	HYTLGPLKPWDW	
	PGSIP-C	RVVMLD=DN:FLERT	FPS@PWLKPWYWW	

ProSite style pattern: H-x(2)-G-x(2)-K-P-W

PSI blast Iteration 2

gi|86611465 (673 letters)

Query ID qi|86611465|qb|ABD14404.1|

Select: All None Selected:0

Description homogalacturonan alpha-1,4-galacturonosyltransferase

[Arabidopsis thaliana]

Molecule type amino acid

Query Length 673

Database Name nr

Description All non-redundant GenBank CDS

translations+PDB+SwissProt+PIR+PRF excluding

environmental samples from WGS projects

Program BLASTP 2.2.27+ ▶ Citation

Other reports: ▶ Search Summary [Taxonomy reports] [Distance tree of results] [Multiple alignment]

Graphic Summary

Descriptions

Provide feedback on the new report

Skip to the first new s

Run PSI-Blast iteration 3 with max 500 Go

Sequences producing significant alignments with E-value BETTER than threshold

Alignments Download GenPept Graphics Distance tree of results Multiple alignment O Select Used Е Max Total Query to Description Accession value ident build score score cover blast PSSM alpha-1,4-galacturonosyltransferase 1 [Arabidopsis thaliana] >sp[Q9LE59.1|GAUT1_ARATH RecName: Full=Polygal_1093 1093 100% 0.0 100% NP 191672.1 $\overline{\mathbf{v}}$ GAUT1/LGT1 [Arabidopsis lyrata subsp. lyrata] >qb[EFH52853.1] GAUT1/LGT1 [Arabidopsis lyrata subsp. lyrata] 1085 100% XP 002876594.1 0.0 unnamed protein product [Vitis vinifera] 1022 100% 0.0 75% CBI38820.3 JHL05D22.8 [Jatropha curcas] 1016 100% 0.0 76% BAJ53137.1 Os09q0531900 [Oryza sativa Japonica Group] >dbj|BAD46018.1| qlycosyl transferase family 8 protein-like [Oryza sativ 1011 1011 72% NP 001063757.1 99% 0.0hypothetical protein Osl 32147 [Orvza sativa Indica Group] 1008 99% 72% EEC84934.1 1008 0.0

Yellow: sequences scoring below threshold on previous iteration

Hands on exercise 4

RPS-BLAST

Given protein sequences, find conserved functional domains

Specialized searches

SmartBLAST

٩

Find proteins highly similar to your query

Primer-BLAST

a

Design primers specific to your PCR template **Global Align**

٩

Compare two sequences across their entire span (Needleman-Wunsch) **CD-search**

٩

Find conserved domains in your sequence

GEO

ر ۵

Find matches to gene expression profiles **IgBLAST**

٩

Search immunoglobulins and T cell receptor sequences VecScreen

Q

Search sequences for vector contamination

CDART

٩

Find sequences with similar conserved domain architecture

Targeted Loci

۹

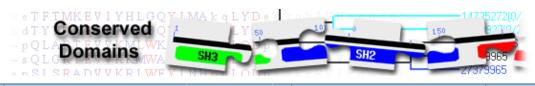
Search markers for phylogenetic analysis

Multiple Alignment

٩

Align sequences using domain and protein constraints

BioAssay

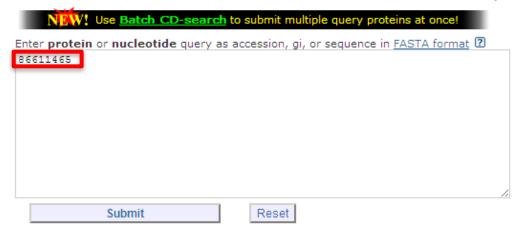

٩

Search protein or nucleotide targets in PubChem BioAssay MOLE-BLAST

Q,

Establish taxonomy for uncultured or enviromental sequences

Structure Home

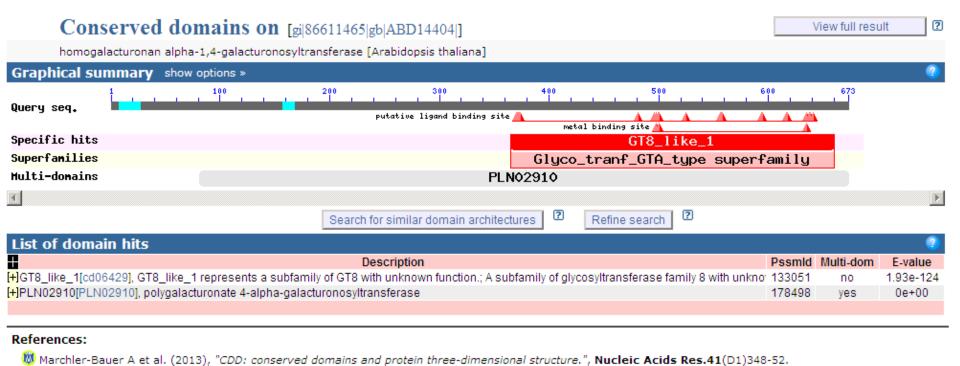

3D Macromolecular Structures

Conserved Domains

Pubchem

BioSysten

Search for Conserved Domains within a protein or coding nucleotide sequence


— OPTIONS —					
01 110113					
Search against database 2: CDD v3.08 - 43334 PSSMs 🔻					
Expect Value 2 threshold: 0.01					
Apply low-complexity filter ② ☑					
Force live search ② 🗖					
Maximum number of hits 2 500					
Result mode ⊙Concise ② CFull ②					

Retrieve previous CD-search result

?

References:

- Marchler-Bauer A et al. (2013), "CDD: conserved domains and protein three-dimensional structure.", Nucleic Acids Res.41(D1)348-52.
- 🖚 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.
- Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Help | Disclaimer | Write to the Help Desk

👹 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.

👹 Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Next class: NCBI GEO and ftp resource (with a little bit intro to Linux skills) and practice