Homework #9

For the GH5 proteins in Homework #8, convert the downloaded genpept file to fasta format file using command line seqret (EMBOSS package).

Select five proteins in the fasta format file and save as a file (vi or nano) and use this smaller file as query to BLASTP search against cow rumen metagenome peptide database (/home/yyin/work/class/metagenemark_predictions.faa); save as tabular format output (use e-value < 1e-2 as cutoff, also use the -b option to change the default value to a higher number).

Use ssearch36 (/home/yyin/work/class/fasta-36.3.5e/bin/) to do the search as well (use these options: -m 8C -d 0 -E 1e-2; read the fasta manual page 9 to 11 to find out what these options mean); save as tabular format output.

Download the GH5 HMM (http://cys.bios.niu.edu/dbCAN/family.php?ID=GH5) from dbCAN and use hmmsearch to search against the cow rumen metagenomes (also use e-value < 1e-2 as cutoff); save as tabular format output.

Design command line to use grep, awk, cut, sort, uniq to process the above three output files and save hit IDs as files; wc each files to see which search method give the most hits

Office hour: Tue, Thu and Fri 2-4pm, MO325A Or email: yyin@niu.edu

Report due April 16 (send by email)

do the following in /media/DATAPART1/z1576493/class/mar19/ formatdb -i ecoli-all.faa formatdb - # see the options, for nt db, also use -p F less ecoli-all.faa # select the 3rd protein sequence(YP 488309.1) vi test-query.fa # create a file to store this protein seq

[now blast, which is in your path already] blastall -p blastp -i test-query.fa -d ecoli-all.faa blastall -p blastp -i test-query.fa -d ecoli-all.faa > test-query.fa.out

[-m 9, the tabular format output without alignment, easy to parse] blastall -p blastp -i test-query.fa -d ecoli-all.faa -m 9 blastall -p blastp -i test-query.fa -d ecoli-all.faa -m 9 > testquery.fa.out.m9

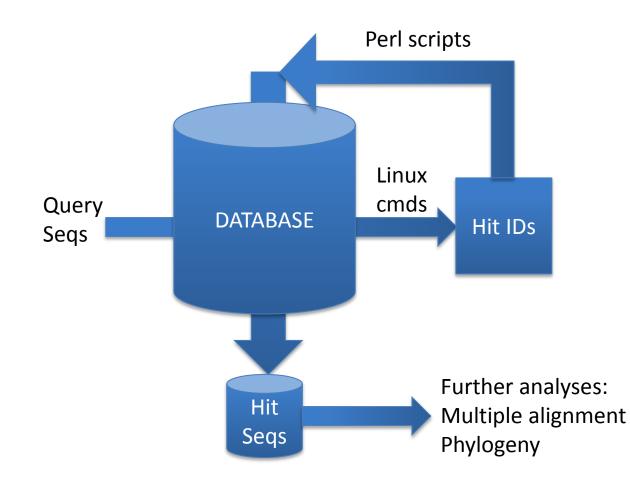
 $[-e \ 1e-2, \text{ showing only hits with evalue } < 1e-2]$ blastall -p blastp -i test-query.fa -d ecoli-all.faa -m 9 -e 1e-2

[Now try something big (and slow)] time blastall -p blastp -i test-query.fa -d /home/yyin/work/class/metagenemark predictions.faa -m 9 -e 1e-2 > testqery.fa.cowrumen.out.m9 &

[Do some parsing]

```
less test-query.fa.cowrument.out.m9 | cut -f1,2,3,7- | less
less test-query.fa.cowrument.out.m9 | cut -f1,2,3,7- | grep -v '^#' |
cut -f2 | sort -u | head
```

If a program (e.g. BLAST) runs so long on a remote Linux machine that it won't finish before you leave for home ...


Or if you somehow want to restart your laptop/desktop where you have a Putty session is running (Windows) or a shell terminal is running (Ubuntu) ...

In any case, you have to close the terminal session (or have it be automatically terminated by the server). If this happens, your program will be terminated without finishing. If you expect your program will run for a very long time, e.g. longer than 10 hours, you may put "nohup" before your command; this ensures that even if you close the terminal, the program will still run in the background until it is finished and you can log in again the next day to check the output. For example:

```
nohup blastall -p blastp -i test-query.fa -d
/home/yyin/work/class/metagenemark_predictions.faa -m 9 -e 1e-2
> test-qery.fa.cowrumen.out.m9 &
```

You will get an additional file nohup.out in the working folder and this file will be empty if nothing wrong happened.

How do you extract the sequences of the blast hits?

Multiple sequence alignment: run mafft using command line

/usr/local/bin/mafft: Cannot open --help.

```
mafft -h
```

MAFFT v6.955b (2012/11/20) http://mafft.cbrc.jp/alignment/software/ NAR 30:3059-3066 (2002), Briefings in Bioinformatics 9:286-298 (2008)

High speed: % mafft in > out % mafft --retree 1 in > out (fast)

High accuracy (for <~200 sequences x <~2,000 aa/nt): % mafft --maxiterate 1000 --localpair in > out (% linsi in > out is also ok) % mafft --maxiterate 1000 --genafpair in > out (% einsi in > out) % mafft --maxiterate 1000 --globalpair in > out (% ginsi in > out)

If unsure which option to use: % mafft --auto in > out

- --op # : Gap opening penalty, default: 1.53
- --ep # : Offset (works like gap extension penalty), default: 0.0
- --maxiterate # : Maximum number of iterative refinement, default: 0
- --clustalout : Output: clustal format, default: fasta
- --reorder : Outorder: aligned, default: input order
- --quiet : Do not report progress
- --thread # : Number of threads (if unsure, --thread -1)

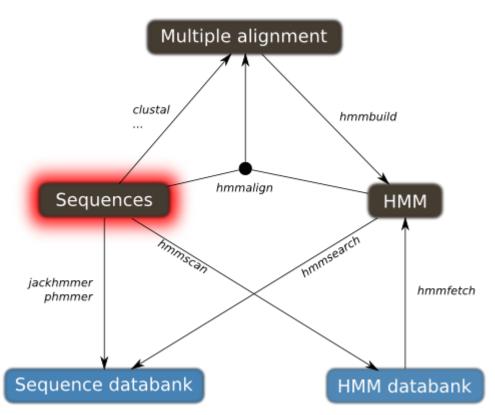
cp /home/yyin/work/class/test-query.fa.cowrument.out.m9.head10.fa .

mafft --auto test-query.fa.cowrument.out.m9.head10.fa > testquery.fa.cowrument.out.m9.head10.fa.1

Phylogeny building: FastTree program
(http://www.microbesonline.org/fasttree/)

/home/mrupani/Downloads/FastTree
FastTree protein_alignment > tree

/home/mrupani/Downloads/FastTree testquery.fa.cowrument.out.m9.head10.fa.l > testquery.fa.cowrument.out.m9.head10.fa.l.fasttree.nwk


less test-query.fa.cowrument.out.m9.head10.fa.l.fasttree.nwk

HMMER: http://hmmer.janelia.org/

What is HMMER? <u>ftp://selab.janelia.org/pub/software/hmmer3/3.0/Userguide.pdf</u> HMMER is a software package that is used for searching sequence databases for homologs, making protein sequence alignments, and making profile hidden Markov models (profile HMMs). It implements methods using probabilistic models called profile hidden Markov models, mathematically representing multiple sequence alignments.

Compared to BLAST, FASTA, and other sequence alignment and database search tools based on older scoring methodology, HMMER aims to be

significantly *more* accurate and *more* able to detect remote homologs because of the strength of its underlying mathematical models. In the past, this strength came at significant computational expense, but in the new HMMER3 project, HMMER is now essentially **as fast as** BLAST

http://drmotifs.genouest.org/2010/10/sequence-hammering/

Go to http://cys.bios.niu.edu/dbCAN/family.php?ID=GH5 and download

wget -q http://cys.bios.niu.edu/dbCAN/data/aln/cazyfamily/aln/GH5.aln less GH5.aln

hmmbuild # list options hmmbuild -h # list complete options hmmbuild --informat afa GH5.hmm GH5.aln # build model, afa: aligned fasta format, see User Guide page 16 footnote less GH5.hmm # profile HMM file is a text file

hmmsearch hmmsearch -h hmmsearch --domtblout GH5.hmm.cowrumen.dm GH5.hmm metagenemark_predictions.faa > GH5.hmm.cowrumen.out & # save easy-to-parse table of per-domain hits to file in addition to the regular output (with alignment)

# Starred • Starred				
# target name	accession	tlen	query name	accession
# Chats 1 * Alison, fqmc (3)	374 Chautauqua, Syc	300	(Buyer: Yanbin Yin) - Please ha	ive appraiser schedu
NODE_457020_length_97146_cov_14.955994_orf_01700	preapproval - Their ch	782	GH5.hmm 4 han us, compa	rin g witt <mark>5</mark> ine #801- o
NODE_457020_length_97146_cov_14.955994_orf_01700	BESC yyin@niu.edu	782	GH5 . hmmr Dear Dr. Yanbin	, H o pe you are well.
NODE_2854003_length_94157_cov_5.769428_orf_67030	win@niu.edu SMBF	378	GH5.hmm	u for submitting your
NODE_2314521_length_30819_cov_0.660826_orf_30190		715	GH5.hmm	-
NODE_2314521_length_30819_cov_0.660826_orf_30190	Next step after accept	715	GH5.hmm	r n <u>e</u> xt steps after we
NODE_3609387_length_51250_cov_2.036859_orf_24440	370_Chuatauqua, Syc	423	GH5.hmm Please see attache	d. They made chang
NODE_2891766_length_19360_cov_5.591064_orf_12550	a n e w project - Yanbi	409	GH5.hmm it is great you can h	el p ! Thanks a lot! Qia
NODE_457020_length_97146_cov_14.955994_orf_01790	BESC GC Docum	995	GH5.hmm	ed vour packet this m
NODE_457020_length_97146_cov_14.955994_orf_01790		995	GH5.hmm	
NODE_4002281_length_100204_cov_2.154804_orf_16350	yyin@niu.edu FY13	624	GH5.hmm	please find an overal
NODE_421339_length_112723_cov_3.569067_orf_68070	yyin@niu.edu invitat	413	GH5.hmm ^{review} article in From	ntiers in Bioscience -

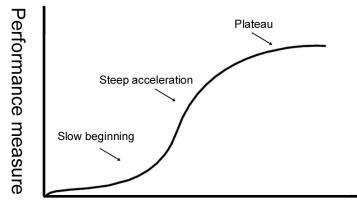
<u> </u>																	
6	full	sequend	ce			thi	.s domain -			hmm	coord	ali	coord	env	coord		
qlen	E-value	score	bias	#	of	c-Evalue	i-Evalue	score	bias	from	to	from	to	from	to	acc	description of target
	7	Liqu <mark>Q</mark> Alis	san, r G (1	1 -A	11		13	1-4	12 4 5 20	16	17	18	19	tion ober	ob ever e o	n <u>4</u>	N
275	2.9e-71				2	1.2e-45				2	239	68	328	67	341	0.80	complement(1702219367)
275	2.9e-71	247.3	13.4	2	2	2.3e-28	1.5e-25	97.4	0.3	7	228	409	651	403	666	0.74	complement(1702219367)
275	2.2e-55	195.2	2.8	1	1	4.6e-58	3e-55	194.8	1.9	22	241	10	271	3	294	0.80	complement(33764509)
275	3.3e-55	194.6	8.6	1	2	4.7e-32	3.1e-29	109.5	1.3	4	243	41	301	38	311	0.80	complement(2170923853)
275	3.3e-55	194.6	(3 8.6	2	2	6.9e-26	4.5e-23	89.3	0.4	2	239	344	601	343	628	0.79	complement(2170923853)
275	6.2e-55	193.8	(3) 3.0	1	1	1.3e-57	8.8e-55	193.3	2.1	24	244	95	357	83	379	0.80	complement(3351434782)
275	1.4e-54	192.6	1.1	(10	1	2.8e-57	1.8e-54	192.2	0.8	22	242	80	343	73	364	0.81	complement(1147812704)
275	1.7e-54	192.3	5.4	1	2	6.3e-29	4.1e-26	99.2	0.6	2	237	41	311	40	322	0.74	3465637640
275	1.7e-54	192.3	5.4	2	2	1.1e-27	7e-25	95.2	0.2	2	240	358	625	357	642	0.74	3465637640

[a little parsing, alignment in GH5.hmm.cowrumen.out] less GH5.hmm.cowrumen.dm | grep -v '^#' | awk '{print \$1,\$3,\$6,\$7,\$12,\$13,\$16,\$17,\$18,\$19}' | less less GH5.hmm.cowrumen.dm | grep -v '^#' | awk '{print \$1,\$3,\$6,\$7,\$12,\$13,\$16,\$17,\$18,\$19}' | awk '\$6<1e-2&&(\$8-\$7)/\$3>.8' | sed 's/ /\t/g' | less Extracting domain regions is easy if using perl and bioperl 9

emboss

seqret -help http://emboss.sourceforge.net/apps/release/6.1/emboss/apps/seqret.html

seqret -sequence test-query.fa.cowrument.out.m9.head10.fa.l -outseq testquery.fa.cowrument.out.m9.head10.fa.l.aln -sformat fasta -osformat aln


infoseq -help
http://emboss.sourceforge.net/apps/release/6.2/emboss/apps/infoseq.html

infoseq -sequence test-query.fa.cowrument.out.m9.head10.fa -name -only length

More command examples:

needle -help	plotorf -help
water -help	transeq -help
fuzznuc -help	garnier -help
pepstats -help	prettyseq -help est2genome -help
pepinfo -help	estagenome nerp

In the remaining classes

Do expect you:

- Get Familiarized with Linux commands
- Be able to read some example Perl scripts
- Know how to run given perl scripts
- Practice examples on projects
- Be able to finish the two course projects

Do not expect you (or not all of you):

- Be able to write complex Perl scripts
- Become a professional programmer
- Become a professional bioinformatian

Number of trials or attempts at learning

Things you should know about programming

Learning programming has to go through the hands-on practice, a lot of practice

Hearing what I describe about a command or a program helps, but you will not be able to do it unless you type in the codes and run it to see what happens

Reading others' codes helps but often is harder than writing it by yourself from scratch

Although painful and frustrating, trouble-shooting is normal and part of the learning experience (ask experienced people or google)

To avoid errors, you have to follow rules; most errors occurred in programming are because of not knowing rules or forgetting rules

Use comments in case you forget what you've written means

Edit -> run -> errors -> revise -> errors -> -> run -> success

Good news: finished scripts could be reused or edited for later use

What we will cover in the remaining classes:

Perl basic concepts Example Perl scripts Bioperl concepts Example Bioperl scripts