
1

Always use tab-completion to prevent spelling mistakes: you
never know when you have made mistakes

emboss

seqret –help

seqret -sequence test-query.fa.cowrument.out.m9.head10.fa.l -outseq test-

query.fa.cowrument.out.m9.head10.fa.l.aln -sformat fasta -osformat aln

infoseq –help

http://emboss.sourceforge.net/apps/release/6.2/emboss/apps/infoseq.html

infoseq -sequence test-query.fa.cowrument.out.m9.head10.fa -name -only –

length

More command examples:

needle –help

water –help

fuzznuc –help

pepstats -help

pepinfo –help

2

http://emboss.sourceforge.net/apps/release/6.1/emboss/apps/seqret.html

plotorf -help

transeq -help

garnier –help

prettyseq –help

est2genome -help

http://emboss.sourceforge.net/apps/release/6.2/emboss/apps/infoseq.html
http://emboss.sourceforge.net/apps/release/6.2/emboss/apps/infoseq.html
http://emboss.sourceforge.net/apps/release/6.1/emboss/apps/seqret.html
http://emboss.sourceforge.net/apps/release/6.1/emboss/apps/seqret.html

3

In the remaining classes

Do expect you:
• Get Familiarized with Linux commands
• Be able to read example Perl scripts
• Know how to run given perl scripts
• Practice examples on projects
• Be able to finish the two course projects

Do NOT expect you (or not all of you):
• Be able to write complex Perl scripts
• Become a professional programmer
• Become a professional bioinformatian

4

Learning programming has to go through the hands-on practice, a lot of practice

Hearing what I describe about a command or a program helps, but you will not be able to do
it unless you type in the codes and run it to see what happens

Although painful and frustrating, trouble-shooting is normal and part of the learning
experience (ask experienced people or google)

To avoid errors, you have to follow rules; most errors occurred in programming are because
of not knowing rules or forgetting rules

Reading others’ codes helps but often is harder than writing it by yourself from scratch

Use comments in case you forget what you’ve written means

Edit -> run -> errors -> revise -> errors -> ………………………………….. -> run -> success

Good news: finished scripts could be reused or edited for later use

Things you should know about programming

5

What we will cover in the remaining classes:

Perl basic concepts
Example Perl scripts
Bioperl concepts
Example scripts using bioperl modules

Perl Basics

• Variable, scalar, array, hash, hash of arrays

• Control flow: if/elsif/else, for loop, foreach
loop, while loop

• Input and output

• Numeric operators and logic operators

• Subroutines and modules

• Regular expression

6

7

What is Perl?

•Scripting language by Larry Wall, 1985
•Born of AWK
•Practical Extraction and Reporting Language

http://www.bsi.umn.edu/resources/perl1.pdf

8

Why Perl?!

•An easy language to use, though sometimes hard to
learn. Some choices were made to make things easier
for the programmer at the expense of the student.
•Fast cross platform text processing.
•Good pattern matching. (regex)
•Many extensions for Life Sciences data types.
(BioPerl)
•Many biologists already know Perl.
•Powerful

http://www.bsi.umn.edu/resources/perl1.pdf

9 http://www.bsi.umn.edu/resources/perl1.pdf

10

Programming Strategies
Break down into two major approaches:
 1. Find a program written by someone else.
 2. Write one yourself.
The reality is usually somewhere in between.

The Process
1. Identify the inputs, data, and specifications from the user.
2. Design the solution as a series of steps toward the desired result.
3. Decide on the output(s). Does the result print to the screen or to a file?
How will this output be used? Does format matter?
4. Refine the design with increasing detail. (pseudocode)
5. Do appropriate code modules exist? (CPAN)
6. Write the program.

Pseudocode
• An informal program in which
there are no details and formal
syntax is not followed.
• A quick and informal way to
collect your ideas about solving
the problem at hand.

http://www.bsi.umn.edu/resources/perl1.pdf

11

Now create a file called hello.pl

vi hello.pl

Or
nano hello.pl

Type in the following :

After exit do:

perl hello.pl

If use vi

Press i to the edit mode

Esc then :x to save and exit

Esc then :q! to exit without
save

#!/usr/bin/perl -w

a program to do the obvious

print “Hello, world!\n”;

12

This is a special line called command
interpretation that tells the computer that this
is a Perl program

Notice that the first line of code uses a flag -w. The
"w" stands for warnings, and it causes Perl to print
messages in case of an error. Very often the error
message suggests the line number where it thinks
the error began.

Every line of codes must
have ; in the end

Special formatting characters:
\n new line
\t Tab
\s Space

You can have empty lines

13

14

If you want to print the following:

Today’s "Blue-Plate Special" costs $5.99.

print "Today’s "Blue-Plate Special" costs $5.99."

print "Today\’s \"Blue-Plate Special\" costs \$5.99."

Working with strings: double quotes

The type of quotation mark around the string makes a difference as to how Perl
treats it. A string enclosed in double quotes undergoes a process called
interpolation, and anything that Perl recognizes as a variable gets replaced by the
value of that variable

Backslash (\) is used to escape interpolation of special characters.

15

Create hello2.pl to define a variable to hold the word string

A variable is a named reference to a memory location. Variables provide an easy handle for
programmers to keep track of data stored in memory

Perl has three basic types of variables.
- Scalar variables hold the basic building blocks of data: numbers and characters.
- Array variables and hash variables hold lists.
- The three types are differentiated by the first character in the variable name: ‘$ ’, ‘@ ’, and
‘%’, respectively. For example, $a, @a, %a

16

Make a few deleterious mutations to your program hello2.pl

What happens when?:
1. You remove a semicolon?
2. You remove a dollar sign?
3. You change the shebang (#!)?
4. Can you change the shebang to something else that works?

Observe the error messages. One of the most important aspects of
programming is debugging. Probably more time is spent debugging than
programming, so it’s a good idea to start recognizing errors now.

17

• Scalar: a variable quantity that cannot be resolved
into components, e.g. $a

• List or array: a collection of items, often stored in
an array, indexing item with a number, e.g. @a, when
referring to a particular item: $a[1]

• Hash: like an array, but instead of indexing values
by number, values are accessed by name. Think of
them as name-value pairs, e.g. %a, when referring to
a particular item: $a{“name”}

18

Scalar

19

$x = 3

$y = 2

Mathematical operations

http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.1.1.html

Space or not and how many, does not matter

20

$x++
$x=$x+1

$x+=1

21

Array and hash are VERY useful to hold text data in the memory
and are often created using loops

• Array:
@fruit_list = (‘apple’, ‘orange’, ‘banana’);

• Hash:
%ip2hostname = (
“glu” => “131.156.41.196”,
“gly” => “131.156.41.193”,
“cys” => “131.156.41.195”
);

$fruit_list[0]=‘apple’;
$fruit_list[1]=‘orange’;
$fruit_list[2]=‘banana’;

$ip2hostname{“glu”}=‘131.156.41.196’;
$ip2hostname{“gly”}=‘131.156.41.193’;
$ip2hostname{“cys”}=‘131.156.41.195’;

=

=

22

$cards[0] $cards[4]

http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.1.1.html

23

Create an array from a tabular format file using perl

vi array-from-file.pl

Save and exit vi

perl array-from-file.pl test-query.fa.cowrumen.out.m9 | less

#!/usr/bin/perl

open (IN,$ARGV[0]);

@a=<IN>; # assign to an array

foreach $line (@a){

 print $line;

}

File handle: IN

@ARGV: special variable to
capture command line arguments

$ARGV[0]: the first element

24

 Perl has many predefined special variables that contain default values designed
to make life easier for programmers. Most special variables are a combination
of punctuation marks and obscure characters, and a programmer following the
good coding practice of creating meaning variable names will never accidentally
run into them.

25

#!/usr/bin/perl

while(<>){

 print $_;

}

#!/usr/bin/perl

open (IN,$ARGV[0]);

@a=<IN>; # assign to an array

foreach $line (@a){

 print $line;

}

=

The "diamond operator", <> is used when a program is expecting input; <> means standard
input <STDIN>

#!/usr/bin/perl

while($line=<>){

 print $line;

}

=

perl array-from-file.pl test-query.fa.cowrumen.out.m9 | less

26

#!/usr/bin/perl

open (IN,$ARGV[0]);

@a=<IN>;

foreach $line (@a){

 @col=split(/\t/,$line);

 print $col[0];

}

perl array-from-file.pl test-query.fa.cowrumen.out.m9 | less

