
1

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | head -5

9606 1 2591067
9606 1 3458201
9606 1 3610142
9606 1 8889549
9606 1 12477932

How many homo sapiens (using human taxid) genes are there?
yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | sort -u

| wc -l

31386

The top 10 genes with the largest number of pubmed paper
yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | sort |

uniq -c | sort –k 1,1nr | head -5

 5662 7157
 3900 7124
 3074 348
 2736 1956
 2723 7316

Homework 7

2

A good way to understand a long command line:
Run each step and less to see what happened and then add the next step and less

yyin@glu:~/work/class$ less gene2pubmed

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | less

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | less

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | sort | less

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | sort | uniq

-c | less

yyin@glu:~/work/class$ less gene2pubmed | awk '$1==9606' | cut -f2 | sort | uniq

-c | sort –k 1,1nr | head -5

less gene2pubmed | awk '$1==9606' | cut -f2 | sort | uniq -c | sort –k 1,1nr | less

1 2 3 4 5 6

1. In homework #9, you got fasta sequences of GenBank GH5 proteins.
- Design command line to extract sequence IDs and save as separate file.
- Using this ID file as input, write a simple perl script to generate a color definition file with 1st col to

be the protein ID and the 2nd col to be the hex blue color code (ref to slide 14 of this class).

2. In homework #9, you also got the output files of searching GH5 homologous proteins against cow
rumen metagenome using three search tools (blast, fasta and hmmer).
- Modify the command line in slide #9 of http://cys.bios.niu.edu/yyin/teach/PBB/Apr02-2013.pdf to

extract the hit IDs (use the shown e-value and coverage cutoffs in the slide) and save as separate file.
- Use the example perl script that I have in this class (slide 24) to extract the fasta sequences from cow

rumen metagenome database (two input files: ID file and fasta seq file).

3. Similar to 1, prepare a color definition file for metagenome hit IDs using hex red color. Combine the
two definition files into one using cat.

4. Combine the fasta sequences from GenBank (step 1) and metagenome (step 2).

5. For combined fasta sequences from 4, MAFFT alignment and then FASTTREE to build phylogeny.

6. Upload newick tree file in 5 and the combined color definition file in 3 to iTOL to generate colored
phylogeny and save the radiation view as a PDF figure.

Report due April 23 (send by email)

3

Homework #10

Office hour:
Tue, Thu and Fri 2-4pm, MO325A

Or email: yyin@niu.edu

http://cys.bios.niu.edu/yyin/teach/PBB/Apr02-2013.pdf
http://cys.bios.niu.edu/yyin/teach/PBB/Apr02-2013.pdf
http://cys.bios.niu.edu/yyin/teach/PBB/Apr02-2013.pdf
http://cys.bios.niu.edu/yyin/teach/PBB/Apr02-2013.pdf

4

#!/usr/bin/perl -w

$x=3; # assign value to scalar

$y=2;

print “$x plus $y is equal to “, $x+$y ,”\n”;

$sum=$x+$y;

print “\$sum is equal to $sum \n”;

print “$x minus $y is equal to “, $x-$y ,”\n”;

$minus=$x-$y;

print “\$minus is equal to $minus \n”;

print “$x times $y is equal to “, $x*$y ,”\n”;

print “$x divided by $y is equal to “, $x/$y ,”\n”;

Create a file called math.pl
perl math.pl

If use vi
Press i to the edit mode
Esc then :x to save and exit
Esc then :q! to exit without save

5

Array and hash are VERY useful to hold text data in the memory
and are often created using loops

• Creating Array:
@fruit_list = (‘apple’, ‘orange’, ‘banana’);

• Creating Hash:
%ip2hostname = (
“glu” => “131.156.41.196”,
“gly” => “131.156.41.193”,
“cys” => “131.156.41.195”
);

$fruit_list[0]=‘apple’;
$fruit_list[1]=‘orange’;
$fruit_list[2]=‘banana’;

$ip2hostname{“glu”}=‘131.156.41.196’;
$ip2hostname{“gly”}=‘131.156.41.193’;
$ip2hostname{“cys”}=‘131.156.41.195’;

=

=

6

$cards[0] $cards[4]

http://korflab.ucdavis.edu/Unix_and_Perl/unix_and_perl_v3.1.1.html

= (7, 2, 10, 3, ‘A’); Array is indexed by
numbers beginning
from 0

Function Meaning

push(@array, "some value") add a value to the end of the list

$popped_value = pop(@array) remove a value from the end of the list

$shifted_value = shift (@array) remove a value from the front of the list

unshift(@array, "some value") add a value to the front of the list

splice(...) everything above and more!

7

% ip2hostname

Function Meaning

keys %hash returns an array of keys

values %hash returns an array of values

exists $hash{key} returns true if the key exists

delete $hash{key} removes the key and value from the hash

glu 131.156.41.196
gly 131.156.41.193
cys 131.156.41.195

@server = keys %ip2hostname

@server will have three server names (‘glu’, ‘gly’, ‘cys’)

8

Create an array from a tabular format file using perl

vi array-from-file.pl

Save and exit vi

less /home/yyin/work/class/cosmicRaw.txt.head10.6col

perl array-from-file.pl /home/yyin/work/class/cosmicRaw.txt.head10.6col

#!/usr/bin/perl -w

open (IN,$ARGV[0]);

@a=<IN>; # assign to an array

foreach $line (@a){

 print $line;

}

File handle: IN, a temporary name
assigned to a file.

@ARGV: special variable to
capture command line arguments

$ARGV[0]: the first element

What happened?
File name is captured by an
internal special variable and
passed to a file handle

Then file content is written to an
array and stored in the memory

9

#!/usr/bin/perl -w

open (IN,$ARGV[0]);

@a=<IN>; # assign to an array

print $a[0];

print $a[-1];

$a[0]

$a[9] or $a[-1]

Including the new line character

less /home/yyin/work/class/cosmicRaw.txt.head10.6col

The entire file content is now in @a

10

foreach $line (@a){

 print $line;

}

Something need to be
repeated done for each
element in the array

11

foreach $line (@a){

 print $line;

}

Loop: read one element from an
array at a time and process it

foreach(@a){

 print $_;

}

The element is renamed as $line and
passed into the loop

Inside the loop, print the element,
which is each of the rows in the file

=

Instead of renaming each element using a
new variable, use the internal special
variable $_ to capture each element. This
makes the code easy to write but not easy to
read foreach(@a){

 @col=split(/\t/,$_);

 print $col[1],”\n”;

}

Create a new array @col:
Split is a new function, here to split a
string into pieces given a field
delimiter. “\t” is tabular space.

There are a lot of built-in perl functions that are useful for text processing, just like functions
for numeric calculations (sqrt, log, abs, sin, cos etc.)

12

 Perl has many predefined special variables that contain default values designed
to make life easier for programmers. Most special variables are a combination
of punctuation marks and obscure characters, and a programmer following the
good coding practice of creating meaning variable names will never accidentally
run into them.

13

#!/usr/bin/perl -w

while(<>){

 print $_;

}

#!/usr/bin/perl -w

open (IN,$ARGV[0]);

@a=<IN>; # assign to an array

foreach $line (@a){

 print $line;

}

=

The "diamond operator", <>
is used when a program is
expecting input;

<> means perl accept data
from standard input
<STDIN> in the command
line

#!/usr/bin/perl -w

while($line=<>){

 print $line;

}

=

perl array-from-file2.pl /home/yyin/work/class/cosmicRaw.txt.head10.6col

cat /home/yyin/work/class/cosmicRaw.txt.head10.6col | perl array-from-file2.pl

Easier way to read in file
without file handle

while loop check a condition first (here if there are data coming in from a file handle,
again one line at a time) and then get into the loop

14

#!/usr/bin/perl

while (<>){

 @col=split(/\t/,$_);

 print $col[1],”\tmutation\n”;

}

perl array-from-file3.pl /home/yyin/work/class/cosmicRaw.txt.head10.6col

#!/usr/bin/perl

open (IN,$ARGV[0]);

@a=<IN>;

foreach(@a){

 @col=split(/\t/,$_);

 print $col[1],”\tmutation\n”;

} =

=

There’s More Than One Way To Do It

The pro of while:
No need to load all data into
memory; process data on a line
by line basis

The con of while:
Can not reference other lines
and can only work once

cat cosmicRaw.txt.head10.6col |

cut –f2 | awk ‘{print

$1,”mutation”}’ | sed ‘s/ /\t/’

15

hash: name-value pair, name also called key

$hash{‘key’}=‘value’;

Like array, key and value of a hash can be assigned in a loop

Key and value could have strict one-to-one correspondence or not

#!/usr/bin/perl -w

while(<>){

 @col=split(/\t/,$_);

 $cosmic{$col[1]}=$_;

}

print $cosmic{'COSM339965'};

Key: $col[1], the second col
Value: $_, the entire row

Call this particular key

perl hash-from-file.pl cosmicRaw.txt.head10.6col

16

This could be VERY useful for holding fasta sequences: id as the key and sequence as the
value

We can store a large fasta file in the memory and call any specific ids anytime

e.g. read in a list of subset IDs to extract the sequences

DATABASE
Query
Seqs/
HMMs

Hit IDs

Hit
Seqs

Further analyses:
Multiple alignment
Phylogeny

Linux
cmds

Perl scripts

Planning:
Step 1: read in fasta seq file to
create hash (load into memory)
Step 2: read in the subset id file
Step 3: use the id as the key to call
the value (sequence)

BLAST
FASTA
HMMER

Tabular
format
output

Input: id file and fasta seq file
Output: a smaller fasta seq file

17

formatdb –i ecoli-all.faa

formatdb – # see the options, for nt db, also use –p F

less ecoli-all.faa # select the 3rd protein sequence(YP_488309.1)

vi test-query.fa # create a file to store this protein seq

[now blast, which is in your path already]

blastall -p blastp -i test-query.fa -d ecoli-all.faa

blastall -p blastp -i test-query.fa -d ecoli-all.faa > test-query.fa.out

[-m 9, the tabular format output without alignment, easy to parse]

blastall -p blastp -i test-query.fa -d ecoli-all.faa –m 9

blastall -p blastp -i test-query.fa -d ecoli-all.faa –m 9 > test-

query.fa.out.m9

[-e 1e-2, showing only hits with evalue < 1e-2]

blastall -p blastp -i test-query.fa -d ecoli-all.faa –m 9 -e 1e-2

[Now try something big (and slow)]

time blastall -p blastp -i test-query.fa –d

/home/yyin/work/class/metagenemark_predictions.faa -m 9 -e 1e-2 > test-

qery.fa.cowrumen.out.m9 &

[Do some parsing]

less test-query.fa.cowrument.out.m9 | cut -f1,2,3,7- | less

less test-query.fa.cowrument.out.m9 | cut -f1,2,3,7- | grep -v '^#' |

cut -f2 | sort -u | head

do the following in /media/DATAPART1/z1576493/class/mar19/

18

Save a test id file

less test-query.fa.cowrument.out.m9 | cut -f1,2,3,7- | grep -v '^#' | cut -

f2 | sort -u | head > test-query.fa.cowrument.out.m9.head10.id

Check a smaller fasta seq file

less test-query.fa.cowrument.out.m9.head10.fa

>NODE_27_length_1627_cov_2.424708_orf_00100 2..1597
SLPSMRADSFTKELMEKISSVRTSTLTFAPEAGTPRLRDIINKNITEEEILRACR
VAYEAGKNQIKLYFMDGLPGETYEDIAGIAALASHVVDEYYRTPGRNKARQP
QVTLSVACFIPKPHTPFQWERQNAPEELADKQAFLSGKITDRKVRHNYHDA
KVSRIEAVFARGDRRLGRALEEAARRHVRFDAWEDCFDYDGWMDIFETVG
IDPAFYANRTIPDDEILPWDMISCGVTKSFLLSERHKAQQAIATPACRDQCSG
CGVNRLVDKRYCRWCPGHPESSDSAGRITSDREIRKKPEETSAQKGNVKPAR
QIRIRFRKYGAMLYISHLDLAKTVMRSIVRSGLPVYYSEGFNPKPKLVFGTPLS
VGCGGEAEVLDIRLMKAVSNAEITEKLKAVMPNGVEVTQVYEQKGKLTDVK
WAENVIEWRNTDVSPELAEKTEALFQSPVVMMKKSKSGEKEVDITSYIRSLR
AEALDGGLRITAVTAAEQENYLNPEYIVQAAERAFGISGENGWHVITRTRLLL
ADGETDFA*
>NODE_33_length_1571_cov_1.473584_orf_00110 1..186
GVVTAKDADVTSAPNNKSQTLNTLSEGTTFEVLSEQGGFVEIRLGEKIRGFVK
TSDVGIVK*
>NODE_33_length_1571_cov_1.473584_orf_00120
complement(218..991)
MVKRGENQLSLMQKFLCALLLALCCNAFATESSGDDSSSYDDQAWRNSKK
YKTWKKYSERDVHAPKALEFRVAGMYPTAFDASVLAFRAVNLVEINDRWRF
YVGYDPFHVTYNEKGFSDESLMLVGAVLAISPFTLIYSAIKGSGSRDPAEEMN
DYYKEASIPKIIFFYIPAYIWCGNLYFPLVEGSWLGLNDQSHVVTHIIEEGGFYL
RSFTYTNDVSLRFSKSGYFVDAGVRLEKNFADDFKARIILQIGVFGSG*

Sometimes there are multiple lines
(newline)

Description line does not allow
to break into multiple lines
(have multi- newline character)

Step 1: process fasta seq file
to create hash (load into
memory)

We want to get ride of
newline character inside the
sequences

19

#!/usr/bin/perl -w

while(<>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 print $_,"\t"; # insert a tabular space

 }

 else{

 print $_; # print the sequence line (no

 # newline character anymore)

 }

}

if/else statement to
control the flow

if (condition)

{

 action;

}

elsif

(condition){

 action;

}

else{

 action;

}

vi get-seq.pl The tabular space Here is where the
second entry started

perl get-seq.pl test-query.fa.cowrument.out.m9.head10.fa

20

#!/usr/bin/perl -w

while(<>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 print “\n”,$_,"\t"; # insert a tabular space

 }

 else{

 print $_; # print the sequence line (no

 # newline character anymore)

 }

}

21

#!/usr/bin/perl -w

while(<>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/); # regexp, match a portion of text

 # and capture the matched by ()

 print “\n”,$id,"\t"; # insert a tabular space

 }

 else{

 print $_; # print the sequence line (no

 # newline character anymore)

 }

}

22

($id)=($_=~/(^\S+)/);
regexp metacharacters

23

#!/usr/bin/perl -w

open(IN,$ARGV[0]);

while(<IN>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

print "\n",$id,"\t"; # insert a tabular space

 $seq_hash{$id}=$seq; # creating hash id-seq pairs

 $seq=""; # empty the $seq variable

 }

 else{

 $seq=$seq.$_; # concatenate seq fragments that was

 # separated by newlines

print $_; # print the sequence line (no

newline character anymore)

 }

}

print $seq_hash{'NODE_3573325_length_256363_cov_8.500103_orf_03140'};

24

#!/usr/bin/perl -w

open(DB,$ARGV[0]);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 $seq_hash{$col[0]}=$col[1];

}

close IN;

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 print ">$_\n",$seq_hash{$_},"\n";

}

close ID; system(“rm tmp”);

perl get-seq3.pl metagenemark_predictions.faa test-query.fa.cowrument.out.m9.hitid |

less

There are 2,547,270
fasta sequences

Loaded into memory, id
as KEY, seq as VALUE

There are 104 seq ids,
one id per line

Now the id is called to
return the seq

Step 1: prepare the tabular
format file (id + seq)
Step 2: load the tabular format
file into memory as a hash
Step 3: read in the id file and
extract seqs

