
1

Homework #8

Creative to use different commands

There are always multiple ways to do it

If you want to transfer between two linux machines, use scp

scp source destination

If I want to copy test-query.fa from glu to gly:

1. Go to /home/yyin/work/class/ of glu
scp test-query.fa yyin@131.156.41.193:~/

Or
2. Go to gly
scp yyin@131.156.41.196:~/work/class/test-query.fa .

Copy folders need the –r option:
scp -r yyin@131.156.41.193:~/db/ .

scp –r db yyin@131.156.41.196:~/work/class/

mailto:yyin@131.156.41.193:~/
mailto:yyin@131.156.41.193:~/
mailto:yyin@131.156.41.196:~/work/class/test-query.fa
mailto:yyin@131.156.41.196:~/work/class/test-query.fa
mailto:yyin@131.156.41.196:~/work/class/test-query.fa
mailto:yyin@131.156.41.193:~/db/
mailto:yyin@131.156.41.196:~/work/class/test-query.fa

2

This week:

Subroutine
Perl module
Bioperl

3

#!/usr/bin/perl -w

open(DB,$ARGV[0]);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 $seq_hash{$col[0]}=$col[1];

}

close IN;

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 print ">$_\n",$seq_hash{$_},"\n";

}

close ID; system(“rm tmp”);

perl get-seq3.pl metagenemark_predictions.faa test-query.fa.cowrument.out.m9.hitid |

less

There are 2,547,270 fasta sequences

There are 104 seq ids, one id per line

Now the id is called to return the seq

Step 2: load the tabular format
file into memory as a hash

Step 1: prepare the tabular
format file (id + seq)

Step 3: read in the id file and
extract seqs

Loaded into memory, id as KEY, seq as VALUE

4

#!/usr/bin/perl -w

open(DB,$ARGV[0]);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print “>”,$col[0],”\n”,$col[1],”\n”;

 }

}

close IN;

close ID; system(“rm tmp”);

perl get-seq4.pl metagenemark_predictions.faa test-query.fa.cowrument.out.m9.hitid | less

cp get-seq3.pl get-seq4.pl

vi get-seq4.pl

If you want to load a huge database …
Computer memory will be an issue …

Step 2: DO NOT load the
tabular format file into
memory as a hash
Go through each sequence
line to check if the ID is in the
hash

Step 1: prepare the tabular
format file (id + seq)

Step 3: read in the id file and
load ids into memory (a hash)

There are 104 seq ids

There are 2,547,270 fasta
sequences

5

#!/usr/bin/perl -w

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

use Bio::SeqIO;

$new=Bio::SeqIO->new(-

file=>$ARGV[0], -format=>"fasta");

while($seq=$new->next_seq){

 if(defined $id_hash{$seq->id}){

 print ">",$seq->id,"\n",$seq-

>seq."\n";

 }

}

#!/usr/bin/perl -w

open(DB,$ARGV[0]);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print “>”,$col[0],”\n”,$col[1],”\n”;

 }

}

close IN;

close ID; system(“rm tmp”);

If we use bioperl, the program will
be much shorter

Bioperl is a collection of perl modules that
facilitate the development of perl scripts for
biology use.

A module is a named container for a group of
variables and subroutines which can be
loaded into your program.

6

#!/usr/bin/perl -w

open(DB,$ARGV[0]);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print “>”,$col[0],”\n”,$col[1],”\n”;

 }

}

close IN;

close ID; system(“rm tmp”);

What if you want to read in another
fasta database and convert the fasta
format to a tabular format?

You will have to repeat this section
of codes twice.

As your programs become more and
more complex, you’ll find yourself
repeating the same chunk of code
in multiple places within the same
program.

You will need subroutines to avoid
the repetitions or reuse existing
codes.

A subroutine is a named block of
code that can be reused in multiple
places

perl get-seq4.pl metagenemark_predictions.faa ecoli-all.faa test-query.fa.cowrument.out.m9.hitid | less

Step 1

Step 2

Step 3

7

#!/usr/bin/perl -w

fasta2tab($ARGV[0]);

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print ">",$col[0],"\n",$col[1],"\n";

 }

}

close IN;

close ID; system("rm tmp");

###################################

sub fasta2tab {

 ($fastafile)=@_;

 open(DB,$fastafile);

 open(OUT,">tmp");

 while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

 }

 close OUT; close DB;

} perl get-seq-sub.pl metagenemark_predictions.faa test-query.fa.cowrument.out.m9.hitid | less

cp get-seq4.pl get-seq-sub.pl

vi get-seq-sub.pl

This code black was in the above, now is in
a subroutine called fasta2tab

Subroutine syntax: sub NAME {}

Call the subroutine fasta2tab and pass the
file name in

@_ is a special variable used to capture
arguments passed from outside

Filename -> $ARGV[0] -> @_ -> $fastafile

You may have multiple subroutines defined in
one script as long as they have different
names and called in the main program. This
type of coding makes your program look
more organized and easy to debug

Step 1

Step 2

Step 3

8

 As we write more and more programs, we
often find one subroutine we used in one
script might also be useful in another script.

We don’t want to copy the often-used
subroutines from one script to another.

#!/usr/bin/perl -w

use lib "/home/yyin/work/class/";

use module::mymodule;

mymodule::fasta2tab($ARGV[0]);

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print ">",$col[0],"\n",$col[1],"\n";

 }

}

close IN;

close ID; system("rm tmp");

package mymodule;

sub fasta2tab{

($fastafile)=@_;

open(DB,$fastafile);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a

tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

}

1;

It would be nice to be able to have a generic
library code that we can include in our
programs, so all that we have to do is to call
the subroutine and not have to worry about
copying the subroutine from one program to
another.

Step 1, the subroutine is
now in a separate file

Step 2

Step 3

9

vi get-seq-mymodule.pl

Change this to the path of your current folder

mkdir module

vi module/mymodule.pm

#!/usr/bin/perl -w

use lib "/home/yyin/work/class/";

use module::mymodule;

mymodule::fasta2tab($ARGV[0]);

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

open(IN,"tmp");

while (<IN>){

 next if $_=~/^$/;

 chomp $_;

 @col=split(/\t/,$_);

 if(defined $id_hash{$col[0]}){

 print ">",$col[0],"\n",$col[1],"\n";

 }

}

close IN;

close ID; system("rm tmp");

package mymodule;

sub fasta2tab{

($fastafile)=@_;

open(DB,$fastafile);

open(OUT,">tmp");

while(<DB>){

 chomp $_; # get ride of newline character

 if($_=~/>/){ # =~ is used to match regexp

 $_=~s/>//; # =~s is used to substitute

 ($id)=($_=~/(^\S+)/);

 print OUT "\n",$id,"\t"; # insert a

tabular space

 }

 else{

 print OUT $_; # print the sequence line

 }

}

close OUT; close DB;

}

1;

Tell perl where to find the module folder

Tell perl where the mymodule.pm file is

Call the fasta2tab subrountine in the
mymodule file in the module folder

perl get-seq-mymodule.pl metagenemark_predictions.faa test-query.fa.cowrument.out.m9.hitid | less

10

Modules (packages) are an important and powerful part of the Perl
programming language. A module is a named container for a group of variables
and subroutines which can be loaded into your program. By naming this
collection of behaviors and storing it outside of the main program, you are able
to refer back to them from multiple programs and solve problems in
manageable chunks.

Modular programs are more easily tested and maintained because you avoid
repeating code, so you only have to change it in one place. Perl modules may
also contain documentation, so they can be used by multiple programmers
without each programmer needing to read all of the code.

Modules are the foundation of the CPAN (Comprehensive Perl Archive Network,
http://www.cpan.org/), which contains 114,000 ready-to-use modules, many of
which you will likely use on a regular basis.

Some modules also call or depend on other modules, so they are all
interconnected.

http://learnperl.scratchcomputing.com/tutorials/modules/

http://cpan.org/
http://cpan.org/
http://www.cpan.org/
http://www.cpan.org/
http://learnperl.scratchcomputing.com/tutorials/modules/

11

http://www.bioperl.org/

12

13

BioPerl is the product of a community effort to produce Perl code useful in biology. Examples
include Sequence objects (modules), Alignment objects and database searching objects.

These objects also interact - Alignment objects are made from the Sequence objects,
Sequence objects have access to Annotation and SeqFeature objects and databases, Blast
objects can be converted to Alignment objects, and so on. This means that the objects
provide a coordinated and extensible framework to do computational biology.

As the objects do most of the hard work for you, all you have to do is combine a number of
objects together sensibly to make useful scripts.

The intent of the BioPerl development effort is to make reusable tools that aid people in
creating their own sites or job-specific applications.

http://search.cpan.org/~cjfields/BioPerl-1.6.901/BioPerl.pm

Bioperl is a collection of perl modules that facilitate the development of perl scripts for bioinformatics
applications. As such, it does not include ready to use programs in the sense that may commercial packages
and free web-based interfaces.

On the other hand, bioperl does provide reusable perl modules that facilitate writing perl scripts for
sequence manipulation, accessing of databases using a range of data formats and execution and parsing of
the results of various molecular biology programs including Blast, clustalw, TCoffee, genscan, ESTscan and
HMMER etc.

http://search.cpan.org/~cjfields/BioPerl-1.6.901/BioPerl.pm
http://search.cpan.org/~cjfields/BioPerl-1.6.901/BioPerl.pm
http://search.cpan.org/~cjfields/BioPerl-1.6.901/BioPerl.pm

14

Bioperl modules are called in the main perl scripts
in a fashion of Object-Oriented paradigm, which is
in contrast to the procedural paradigm. Procedural
code is typically used for short programs while
OOP is often used for complex medium and long
programs.

The OOP is built upon an important concept called
reference, where all variable types, modules,
subroutines can be “referenced” as a hash.

Classes: modules
Methods: subroutines

Jamison D. Perl Programming for
Biologists (Wiley,2003) (ISBN
0471430595)

#!/usr/bin/perl -w

use Bio::SeqIO;

$new=Bio::SeqIO->new(-file=>$ARGV[0],

-format=>"fasta");

while($seq=$new->next_seq){

 print $seq->id,”\t”, length $seq-

>seq, “\n”;

}

15

#!/usr/bin/perl -w

use Bio::SeqIO;

$new=Bio::SeqIO->new(-file=>$ARGV[0], -format=>"fasta");

while($seq=$new->next_seq){

 print $seq->id,”\t”, length $seq->seq, “\n”;

}

vi get-length.pl

perl get-length.pl metagenemark_predictions.faa | less

Step 1: Create a $new object from a fasta file to hold the reference to the fasta format
sequences

Step 2: Call the next_seq method to extract one seq block per cycle and create the $seq
object to hold the block

Step 3: Call the id method and the seq method

The arrow operator -> is widely used to “dereference” a module or subroutine and
build an object (an object is a specific instance of a module or subroutine).

Find out where bioperl modules are installed to:

locate bioperl | less

locate Bio | less

/usr/share/perl5/Bio/SeqIO

Check the Bio folder to see the SeqIO etc.
http://www.bioperl.org/wiki/HOWTO:SeqIO

http://www.bioperl.org/wiki/HOWTO:SeqIO

16

#!/usr/bin/perl -w

open(ID,$ARGV[1]);

while(<ID>){

 chomp $_;

 $id_hash{$_}=1;

}

use Bio::SeqIO;

$new=Bio::SeqIO->new(-file=>$ARGV[0], -format=>"fasta");

while($seq=$new->next_seq){

 if(defined $id_hash{$seq->id}){

 print ">",$seq->id,"\n",$seq->seq."\n";

 }

}

vi get-seq-bioperl.pl

perl get-seq-bioperl.pl test-query.fa.cowrument.out.m9.hitid

metagenemark_predictions.faa | less

17

Perl one-liner

You don’t write codes into a file and then issue “perl file.pl” on the command line;
You write the codes directly on the command line, like you are typing regular Linux commands

perl -e ‘while(<>){@col=split(/\t/,$_);print

$col[1],”\tmutation\n”;}’ cosmicRaw.txt.head10.6col

#!/usr/bin/perl

while (<>){

 @col=split(/\t/,$_);

 print $col[1],”\tmutation\n”;

}

#!/usr/bin/perl

open (IN,$ARGV[0]);

@a=<IN>;

foreach(@a){

 @col=split(/\t/,$_);

 print $col[1],”\tmutation\n”;

} =

cat cosmicRaw.txt.head10.6col |

cut –f2 | awk ‘{print

$1,”mutation”}’ | sed ‘s/ /\t/’ =

=

