logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000003208_03986

You are here: Home > Sequence: MGYG000003208_03986

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Pseudomonas_E extremaustralis
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Pseudomonadales; Pseudomonadaceae; Pseudomonas_E; Pseudomonas_E extremaustralis
CAZyme ID MGYG000003208_03986
CAZy Family GT2
CAZyme Description D-alanine--poly(phosphoribitol) ligase subunit 1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
4714 MGYG000003208_70|CGC1 521173.32 5.5033
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000003208 6254364 MAG United States North America
Gene Location Start: 375;  End: 14519  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000003208_03986.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd17649 A_NRPS_PvdJ-like 0.0 2613 3098 1 450
non-ribosomal peptide synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes pyoverdine biosynthesis protein PvdJ involved in the synthesis of pyoverdine, which consists of a chromophore group attached to a variable peptide chain and comprises around 6-12 amino acids that are specific for each Pseudomonas species, and for which the peptide might be first synthesized before the chromophore assembly. Also included is ornibactin biosynthesis protein OrbI; ornibactin is a tetrapeptide siderophore with an l-ornithine-d-hydroxyaspartate-l-serine-l-ornithine backbone. The adenylation domain at the N-terminal of OrbI possibly initiates the ornibactin with the binding of N5-hydroxyornithine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd17646 A_NRPS_AB3403-like 0.0 4116 4604 4 488
Peptide Synthetase. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd17649 A_NRPS_PvdJ-like 0.0 1558 2039 1 450
non-ribosomal peptide synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes pyoverdine biosynthesis protein PvdJ involved in the synthesis of pyoverdine, which consists of a chromophore group attached to a variable peptide chain and comprises around 6-12 amino acids that are specific for each Pseudomonas species, and for which the peptide might be first synthesized before the chromophore assembly. Also included is ornibactin biosynthesis protein OrbI; ornibactin is a tetrapeptide siderophore with an l-ornithine-d-hydroxyaspartate-l-serine-l-ornithine backbone. The adenylation domain at the N-terminal of OrbI possibly initiates the ornibactin with the binding of N5-hydroxyornithine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd19531 LCL_NRPS-like 0.0 1089 1511 4 427
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity. LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.
cd19531 LCL_NRPS-like 0.0 44 463 1 426
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity. LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QND46664.1 0.0 575 3182 1 2663
BAY90071.1 0.0 216 3185 303 3287
BAZ00088.1 0.0 225 3185 313 3296
BAY30132.1 0.0 225 3185 313 3298
BAZ75991.1 0.0 225 3185 313 3296

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6MFZ_A 1.95e-276 1547 3178 208 1794
Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis]
6MFY_A 9.12e-263 496 2042 204 1716
Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis]
6P1J_A 9.18e-239 47 983 8 964
Thestructure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae],6P1J_B The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae]
5U89_A 9.27e-239 481 1532 9 1073
Crystalstructure of a cross-module fragment from the dimodular NRPS DhbF [Geobacillus sp. Y4.1MC1]
6OYF_A 1.96e-210 47 895 5 873
Thestructure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module [Eleftheria terrae],6OZV_A The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module in complex with AMP [Eleftheria terrae],6P4U_A The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo1 serine module in complex with Mg and AMP [Eleftheria terrae]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39846 0.0 1089 3653 13 2552
Plipastatin synthase subunit B OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsB PE=1 SV=1
Q04747 0.0 47 3653 12 3573
Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3
P94459 0.0 47 3655 13 3597
Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2
P39847 0.0 1089 3655 13 2549
Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2
Q0VZ70 0.0 2127 4686 4 3057
Chondramide synthase cmdD OS=Chondromyces crocatus OX=52 GN=cmdD PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000056 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000003208_03986.