y
Basic Information | |
---|---|
Species | Vitis vinifera |
Cazyme ID | GSVIVT01025737001 |
Family | GT2 |
Protein Properties | Length: 444 Molecular Weight: 51250.9 Isoelectric Point: 8.5127 |
Chromosome | Chromosome/Scaffold: 8 Start: 12410697 End: 12415338 |
Description | Nucleotide-diphospho-sugar transferases superfamily protein |
View CDS |
External Links |
---|
NCBI Taxonomy |
Plaza |
CAZyDB |
Signature Domain Download full data set without filtering | |||
---|---|---|---|
Family | Start | End | Evalue |
GT2 | 51 | 225 | 3.2e-29 |
QIPMYNEKEVYKLSIGAACSVSWPSDRFIIQVLDDSTNEALRVMVELECRKWIDKGVNVKYETRNNRNGYKAGALREGLQKQYVEDCEFVAIFDADFQPE ENFLWRTIPFLLENPGLGLVQARWKFVNADECLMTRLQEMSLDYHFSVEQEVGSSTCSFFGFNGTAGVWRIQAIN |
Full Sequence |
---|
Protein Sequence Length: 444 Download |
MSIMLFIERV YMAIIILCVK VMRKKRYTKY KLDTMKEDLE LNKSYPKVLI QIPMYNEKEV 60 YKLSIGAACS VSWPSDRFII QVLDDSTNEA LRVMVELECR KWIDKGVNVK YETRNNRNGY 120 KAGALREGLQ KQYVEDCEFV AIFDADFQPE ENFLWRTIPF LLENPGLGLV QARWKFVNAD 180 ECLMTRLQEM SLDYHFSVEQ EVGSSTCSFF GFNGTAGVWR IQAINDAGGW KDRTTVEDMD 240 LAVRASLKGW KFLFVGDLSV KNELPSTFKA YRYQQHRWSC GPANLFRKMT KEIILCEAKG 300 INLEEISCHL CILLSTITFL NAVCTPRSLH LVVFWILFEN VMSLHRTKAA IIGLLEANRV 360 NEWVVTEKLG NLMKQKNAKA SKKSRSRVGE RIHLLELIMG MFMLHCAIYN LLFREDHFFI 420 YLILQAGAFF IMGFGYVGTF VSN* 480 |
Functional Domains Download unfiltered results here | ||||||||
---|---|---|---|---|---|---|---|---|
Cdd ID | Domain | E-Value | Start | End | Length | Domain Description | ||
TIGR03030 | CelA | 1.0e-26 | 2 | 332 | 359 | + cellulose synthase catalytic subunit (UDP-forming). Cellulose synthase catalyzes the beta-1,4 polymerization of glucose residues in the formation of cellulose. In bacteria, the substrate is UDP-glucose. The synthase consists of two subunits (or domains in the frequent cases where it is encoded as a single polypeptide), the catalytic domain modelled here and the regulatory domain (pfam03170). The regulatory domain binds the allosteric activator cyclic di-GMP. The protein is membrane-associated and probably assembles into multimers such that the individual cellulose strands can self-assemble into multi-strand fibrils. | ||
cd06435 | CESA_NdvC_like | 3.0e-29 | 50 | 288 | 241 | + NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. NdvC_like proteins in this family are putative bacterial beta-(1,6)-glucosyltransferase. Bradyrhizobium japonicum synthesizes periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans during growth under hypoosmotic conditions. Two genes (ndvB, ndvC) are involved in the beta-(1, 3), beta-(1,6)-glucan synthesis. The ndvC mutant strain resulted in synthesis of altered cyclic beta-glucans composed almost entirely of beta-(1, 3)-glycosyl linkages. The periplasmic cyclic beta-(1,3),beta-(1,6)-D-glucans function for osmoregulation. The ndvC mutation also affects the ability of the bacteria to establish a successful symbiotic interaction with host plant. Thus, the beta-glucans may function as suppressors of a host defense response. | ||
COG1215 | COG1215 | 1.0e-29 | 4 | 278 | 277 | + Glycosyltransferases, probably involved in cell wall biogenesis [Cell envelope biogenesis, outer membrane] | ||
cd06421 | CESA_CelA_like | 1.0e-40 | 46 | 286 | 247 | + CESA_CelA_like are involved in the elongation of the glucan chain of cellulose. Family of proteins related to Agrobacterium tumefaciens CelA and Gluconacetobacter xylinus BscA. These proteins are involved in the elongation of the glucan chain of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues. They are putative catalytic subunit of cellulose synthase, which is a glycosyltransferase using UDP-glucose as the substrate. The catalytic subunit is an integral membrane protein with 6 transmembrane segments and it is postulated that the protein is anchored in the membrane at the N-terminal end. | ||
cd06437 | CESA_CaSu_A2 | 2.0e-135 | 46 | 282 | 237 | + Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit substitute of the cellulose synthase complex. Cellulose synthase (CESA) catalyzes the polymerization reaction of cellulose using UDP-glucose as the substrate. Cellulose is an aggregate of unbranched polymers of beta-1,4-linked glucose residues, which is an abundant polysaccharide produced by plants and in varying degrees by several other organisms including algae, bacteria, fungi, and even some animals. Genomes from higher plants harbor multiple CESA genes. There are ten in Arabidopsis. At least three different CESA proteins are required to form a functional complex. In Arabidopsis, CESA1, 3 and 6 and CESA4, 7 and 8, are required for cellulose biosynthesis during primary and secondary cell wall formation. CESA2 is very closely related to CESA6 and is viewed as a prime substitute for CESA6. They functionally compensate each other. The cesa2 and cesa6 double mutant plants were significantly smaller, while the single mutant plants were almost normal. |
Annotations - NR Download unfiltered results here | |||||||
---|---|---|---|---|---|---|---|
Source | Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
GenBank | ACE60600.1 | 0 | 1 | 417 | 49 | 504 | mannan synthase [Coffea canephora] |
EMBL | CAN74410.1 | 0 | 8 | 443 | 54 | 529 | hypothetical protein [Vitis vinifera] |
EMBL | CBI32777.1 | 0 | 1 | 443 | 1 | 443 | unnamed protein product [Vitis vinifera] |
Swiss-Prot | Q6UDF0 | 0 | 1 | 443 | 46 | 526 | CSLA1_CYATE RecName: Full=Mannan synthase 1; AltName: Full=CtManS |
RefSeq | XP_002277171.1 | 0 | 8 | 443 | 54 | 526 | PREDICTED: hypothetical protein [Vitis vinifera] |
Annotations - PDB Download unfiltered results here | |||||||
---|---|---|---|---|---|---|---|
Source | Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
PDB | 4hg6_A | 6e-21 | 46 | 281 | 140 | 386 | B Chain B, Structure Of A Cellulose Synthase - Cellulose Translocation Intermediate |