logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000008_00996

You are here: Home > Sequence: MGYG000000008_00996

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Lactobacillus johnsonii
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus; Lactobacillus johnsonii
CAZyme ID MGYG000000008_00996
CAZy Family GH32
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
577 64309.17 7.6955
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000008 1971706 Isolate United Kingdom Europe
Gene Location Start: 7449;  End: 9182  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000008_00996.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 42 381 2.2e-41 0.9897610921501706

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18622 GH32_Inu-like 2.40e-59 47 374 1 289
glycoside hydrolase family 32 protein such as Aspergillus ficuum endo-inulinase (Inu2). This subfamily of glycosyl hydrolase family GH32 includes endo-inulinase (inu2, EC 3.2.1.7), exo-inulinase (Inu1, EC 3.2.1.80), invertase (EC 3.2.1.26), and levan fructotransferase (LftA, EC 4.2.2.16), among others. These enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
smart00640 Glyco_32 5.27e-36 42 540 1 437
Glycosyl hydrolases family 32.
pfam00251 Glyco_hydro_32N 1.10e-30 42 377 1 300
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
COG1621 SacC 1.02e-26 27 573 18 472
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
cd08996 GH32_FFase 1.83e-16 48 342 1 258
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QIA88499.1 0.0 3 577 2 576
QIA88618.1 0.0 3 577 2 578
QTH67147.1 0.0 3 577 2 577
QTQ40813.1 0.0 27 576 35 584
AND80386.1 2.14e-221 29 571 2 543

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4FFF_A 9.90e-15 39 385 2 325
CrystalStructure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens],4FFF_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens [Paenarthrobacter ureafaciens]
4FFG_A 9.97e-15 39 385 2 325
CrystalStructure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_B Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_C Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens],4FFG_D Crystal Structure of Levan Fructotransferase from Arthrobacter ureafaciens in complex with DFA-IV [Paenarthrobacter ureafaciens]
4FFH_A 4.09e-14 39 385 2 325
CrystalStructure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFH_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with sucrose [Paenarthrobacter ureafaciens],4FFI_A Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_B Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_C Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens],4FFI_D Crystal Structure of Levan Fructotransferase D54N mutant from Arthrobacter ureafaciens in complex with levanbiose [Paenarthrobacter ureafaciens]
3PIG_A 6.43e-07 41 316 43 302
beta-fructofuranosidasefrom Bifidobacterium longum [Bifidobacterium longum],3PIG_B beta-fructofuranosidase from Bifidobacterium longum [Bifidobacterium longum],3PIJ_A beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum],3PIJ_B beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O07003 3.60e-25 37 388 43 373
Levanbiose-producing levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=levB PE=1 SV=1
K0E4E1 2.29e-12 41 306 36 303
Putative glycosyl hydrolase ecdE OS=Aspergillus rugulosus OX=41736 GN=ecdE PE=3 SV=1
O42878 1.14e-10 42 345 8 291
Putative invertase OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=SPAC8E11.01c PE=3 SV=3
P26792 7.15e-07 26 349 49 357
Beta-fructofuranosidase, insoluble isoenzyme 1 OS=Daucus carota OX=4039 GN=INV1 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.003683 0.994541 0.000408 0.000505 0.000407 0.000431

TMHMM  Annotations      download full data without filtering help

start end
7 29