logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000057_01003

You are here: Home > Sequence: MGYG000000057_01003

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides sp002491635
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides sp002491635
CAZyme ID MGYG000000057_01003
CAZy Family GT4
CAZyme Description Putative glycosyltransferase EpsF
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
364 41554.11 8.4922
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000057 4370351 Isolate United Kingdom Europe
Gene Location Start: 53855;  End: 54949  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000057_01003.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 194 334 1.7e-16 0.88125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03812 GT4_CapH-like 7.26e-41 6 358 8 356
capsular polysaccharide biosynthesis glycosyltransferase CapH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. capH in Staphylococcus aureus has been shown to be required for the biosynthesis of the type 1 capsular polysaccharide (CP1).
cd03801 GT4_PimA-like 5.79e-22 8 319 12 309
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 3.07e-19 6 361 8 351
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
COG0438 RfaB 1.38e-15 39 360 26 375
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 5.94e-15 195 299 5 108
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUT99459.1 3.36e-272 1 364 1 364
QRN01288.1 4.56e-64 1 359 6 363
QSF40204.1 1.77e-61 2 360 8 364
QHI27675.1 4.40e-32 7 309 1 296
ACK60749.1 4.33e-31 7 359 14 373

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P71055 1.33e-21 5 329 13 340
Putative glycosyltransferase EpsF OS=Bacillus subtilis (strain 168) OX=224308 GN=epsF PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000044 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000057_01003.