logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000122_01030

You are here: Home > Sequence: MGYG000000122_01030

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Staphylococcus epidermidis
Lineage Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus epidermidis
CAZyme ID MGYG000000122_01030
CAZy Family GT4
CAZyme Description Poly(glycerol-phosphate) alpha-glucosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
496 MGYG000000122_4|CGC2 58867.09 8.7973
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000122 2560588 Isolate Canada North America
Gene Location Start: 143424;  End: 144914  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000122_01030.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 322 472 4.7e-35 0.93125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04949 GT4_GtfA-like 1.13e-66 212 494 37 327
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.
cd03820 GT4_AmsD-like 5.45e-39 204 469 65 323
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03811 GT4_GT28_WabH-like 1.07e-34 193 489 45 349
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
pfam00534 Glycos_transf_1 1.83e-33 324 477 1 153
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03801 GT4_PimA-like 1.13e-32 182 469 35 334
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AAW52901.1 0.0 1 496 1 496
ARG65813.1 0.0 1 496 1 496
QRI96559.1 0.0 1 496 1 496
QGM87531.1 0.0 1 496 1 496
QRL39634.1 0.0 1 496 1 496

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7EC2_A 2.97e-40 1 471 2 462
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC2_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]
4X7M_A 4.11e-34 2 468 4 459
ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X7M_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7R_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178]
4X6L_A 7.67e-34 2 468 4 459
ChainA, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_C Chain C, TarM [Staphylococcus aureus subsp. aureus 21178],4X6L_D Chain D, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_A Chain A, TarM [Staphylococcus aureus subsp. aureus 21178],4X7P_B Chain B, TarM [Staphylococcus aureus subsp. aureus 21178]
4WAC_A 8.15e-34 2 468 9 464
CrystalStructure of TarM [Staphylococcus aureus],4WAD_A Crystal Structure of TarM with UDP-GlcNAc [Staphylococcus aureus]
7EC1_A 1.46e-30 1 469 2 464
ChainA, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC1_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC4_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7EC6_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFK_B Chain B, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFM_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_A Chain A, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300],7VFN_C Chain C, Glycosyl transferase, group 1 family protein [Staphylococcus aureus subsp. aureus USA300]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P13484 1.24e-35 3 477 20 497
Poly(glycerol-phosphate) alpha-glucosyltransferase OS=Bacillus subtilis (strain 168) OX=224308 GN=tagE PE=1 SV=1
A0A0H2WWV6 4.20e-33 2 468 4 459
Poly(ribitol-phosphate) alpha-N-acetylglucosaminyltransferase OS=Staphylococcus aureus (strain COL) OX=93062 GN=tarM PE=1 SV=1
A0A0H2URG7 2.38e-16 143 456 121 450
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=gtfA PE=1 SV=1
Q9AET5 3.19e-16 147 466 125 462
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus gordonii OX=1302 GN=gtfA PE=1 SV=2
Q9L1I4 2.28e-15 285 466 168 348
Exopolysaccharide phosphotransferase SCO2592 OS=Streptomyces coelicolor (strain ATCC BAA-471 / A3(2) / M145) OX=100226 GN=SCO2592 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999938 0.000112 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000122_01030.