logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000124_03433

You are here: Home > Sequence: MGYG000000124_03433

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Citrobacter youngae
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Citrobacter; Citrobacter youngae
CAZyme ID MGYG000000124_03433
CAZy Family GT4
CAZyme Description Lipopolysaccharide core biosynthesis protein RfaG
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
374 41951.77 7.275
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000124 5038075 Isolate Canada North America
Gene Location Start: 280804;  End: 281928  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000124_03433.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 198 344 4.6e-29 0.91875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 8.89e-47 3 369 2 362
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
pfam00534 Glycos_transf_1 6.17e-38 197 351 3 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
COG0438 RfaB 7.65e-30 1 352 1 357
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03800 GT4_sucrose_synthase 2.73e-26 147 365 173 394
sucrose-phosphate synthase and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. The sucrose-phosphate synthases in this family may be unique to plants and photosynthetic bacteria. This enzyme catalyzes the synthesis of sucrose 6-phosphate from fructose 6-phosphate and uridine 5'-diphosphate-glucose, a key regulatory step of sucrose metabolism. The activity of this enzyme is regulated by phosphorylation and moderated by the concentration of various metabolites and light.
cd03811 GT4_GT28_WabH-like 2.18e-20 3 351 2 345
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AMH12463.1 2.11e-271 1 374 1 374
AYL63513.1 2.11e-271 1 374 1 374
VEI39584.1 3.49e-270 1 374 1 374
QCD71600.1 2.25e-204 1 374 1 374
AZH41168.1 3.20e-204 1 374 1 374

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2IW1_A 2.24e-203 1 374 1 374
CrystalStructure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis [Escherichia coli str. K-12 substr. W3110]
2IV7_A 4.09e-199 2 374 2 374
CrystalStructure of WaaG, a glycosyltransferase involved in lipopolysaccharide biosynthesis [Escherichia coli str. K-12 substr. W3110]
3C4Q_A 4.82e-12 140 354 168 388
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 4.98e-12 140 354 188 408
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]
2N58_A 3.78e-11 103 132 1 30
Structureof an N-terminal membrane-anchoring region of the glycosyltransferase WaaG [Escherichia coli K-12]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P25740 1.23e-202 1 374 1 374
Lipopolysaccharide core biosynthesis protein RfaG OS=Escherichia coli (strain K12) OX=83333 GN=rfaG PE=1 SV=1
A8LZG1 4.53e-15 135 319 184 381
D-inositol 3-phosphate glycosyltransferase OS=Salinispora arenicola (strain CNS-205) OX=391037 GN=mshA PE=3 SV=1
A4X1R6 9.00e-15 135 319 218 415
D-inositol 3-phosphate glycosyltransferase OS=Salinispora tropica (strain ATCC BAA-916 / DSM 44818 / CNB-440) OX=369723 GN=mshA PE=3 SV=1
C9ZH13 4.69e-14 139 318 193 380
D-inositol 3-phosphate glycosyltransferase OS=Streptomyces scabiei (strain 87.22) OX=680198 GN=mshA PE=3 SV=1
D7C367 2.07e-13 135 318 200 391
D-inositol 3-phosphate glycosyltransferase OS=Streptomyces bingchenggensis (strain BCW-1) OX=749414 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000056 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000124_03433.