logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000147_02477

You are here: Home > Sequence: MGYG000000147_02477

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacillus paralicheniformis
Lineage Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; Bacillus paralicheniformis
CAZyme ID MGYG000000147_02477
CAZy Family GT2
CAZyme Description Linear gramicidin synthase subunit B
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
6359 MGYG000000147_3|CGC9 722992.97 5.3285
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000147 4371304 Isolate United Kingdom Europe
Gene Location Start: 698801;  End: 717880  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000147_02477.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd19543 DCL_NRPS 0.0 5091 5515 1 423
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
cd19543 DCL_NRPS 0.0 2544 2967 1 423
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
cd19543 DCL_NRPS 0.0 8 426 1 423
DCL-type Condensation domain of nonribosomal peptide synthetases (NRPSs), which catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. The DCL-type Condensation (C) domain catalyzes the condensation between a D-aminoacyl/peptidyl-PCP donor and a L-aminoacyl-PCP acceptor. This domain is D-specific for the peptidyl donor and L-specific for the aminoacyl acceptor ((D)C(L)); this is in contrast with the standard LCL domains which catalyze peptide bond formation between two L-amino acids, and the restriction of ribosomes to use only L-amino acids. C domains of nonribosomal peptide synthetases (NRPSs) catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains in addition to the LCL- and DCL-types such as starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
cd19534 E_NRPS 0.0 4625 5053 1 428
Epimerization domain of nonribosomal peptide synthetases (NRPSs); belongs to the Condensation-domain family. Epimerization (E) domains of nonribosomal peptide synthetases (NRPS) flip the chirality of the end amino acid of a peptide being manufactured by the NRPS. E-domains are homologous to the Condensation (C) domains. NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. Specialized tailoring NRPS domains such as E-domains greatly increase the range of possible peptide products created by the NRPS machinery. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). There are various subtypes of C-domains such as the LCL-type which catalyzes peptide bond formation between two L-amino acids, the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the E-domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity.
cd05930 A_NRPS 0.0 4046 4526 1 444
The adenylation domain of nonribosomal peptide synthetases (NRPS). The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QND46664.1 0.0 1574 4615 1 2668
BAY90071.1 1.58e-305 1220 4634 307 3304
BAZ00088.1 6.38e-301 1230 4634 318 3313
BAZ75991.1 6.38e-301 1230 4634 318 3313
BAY30132.1 3.76e-299 1230 4634 318 3315

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6MFZ_A 0.0 456 2063 202 1797
Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis]
6MFY_A 0.0 456 1986 202 1720
Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis]
2VSQ_A 1.42e-268 2 1034 6 1041
Structureof surfactin A synthetase C (SrfA-C), a nonribosomal peptide synthetase termination module [Bacillus subtilis]
6MFW_A 9.44e-213 456 1456 202 1184
Crystalstructure of a 4-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis]
6MFX_A 7.97e-212 456 1456 202 1184
Crystalstructure of a 4-domain construct of a mutant of LgrA in the substrate donation state [Brevibacillus parabrevis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39847 0.0 2541 5079 7 2548
Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2
Q5AUZ6 0.0 401 6118 198 5663
Nonribosomal peptide synthase atnA OS=Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) OX=227321 GN=atnA PE=2 SV=1
Q04747 0.0 2 5079 3 3574
Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3
P94459 0.0 5 5079 7 3596
Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2
Q70LM4 0.0 5 4610 4 4673
Linear gramicidin synthase subunit D OS=Brevibacillus parabrevis OX=54914 GN=lgrD PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000070 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000147_02477.