logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000193_03644

You are here: Home > Sequence: MGYG000000193_03644

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species KLE1615 sp900066985
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; KLE1615; KLE1615 sp900066985
CAZyme ID MGYG000000193_03644
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
415 MGYG000000193_65|CGC2 47537.48 9.3877
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000193 4116467 Isolate China Asia
Gene Location Start: 8678;  End: 9925  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000193_03644.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 240 384 1.1e-28 0.91875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03823 GT4_ExpE7-like 2.63e-50 2 410 1 357
glycosyltransferase ExpE7 and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. ExpE7 in Sinorhizobium meliloti has been shown to be involved in the biosynthesis of galactoglucans (exopolysaccharide II).
cd03801 GT4_PimA-like 1.13e-47 2 408 1 365
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 9.82e-37 1 415 2 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 8.54e-27 241 390 6 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03794 GT4_WbuB-like 9.59e-26 2 396 1 382
Escherichia coli WbuB and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. WbuB in E. coli is involved in the biosynthesis of the O26 O-antigen. It has been proposed to function as an N-acetyl-L-fucosamine (L-FucNAc) transferase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QNU66621.1 8.00e-146 2 407 3 411
ADL33107.1 3.77e-104 2 408 23 431
QOS39358.1 7.81e-102 2 410 3 413
BBO68394.1 1.45e-89 1 410 1 421
QMW70467.1 7.92e-85 1 409 1 403

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5I45_A 4.36e-08 237 411 28 212
1.35Angstrom Crystal Structure of C-terminal Domain of Glycosyl Transferase Group 1 Family Protein (LpcC) from Francisella tularensis. [Francisella tularensis subsp. tularensis SCHU S4]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q58577 3.95e-14 207 408 147 346
Uncharacterized glycosyltransferase MJ1178 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1178 PE=3 SV=1
P9WMY8 4.42e-10 208 408 195 390
Glycogen synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT3116 PE=3 SV=1
P9WMY9 4.42e-10 208 408 195 390
Glycogen synthase OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv3032 PE=1 SV=1
Q48453 6.32e-10 192 408 135 355
Uncharacterized 41.2 kDa protein in cps region OS=Klebsiella pneumoniae OX=573 PE=4 SV=1
P9WMZ0 6.97e-08 175 396 142 370
Alpha-maltose-1-phosphate synthase OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=glgM PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000064 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000193_03644.