logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000227_04516

You are here: Home > Sequence: MGYG000000227_04516

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacillus sonorensis
Lineage Bacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; Bacillus sonorensis
CAZyme ID MGYG000000227_04516
CAZy Family GT2
CAZyme Description Gramicidin S synthase 2
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
3151 MGYG000000227_13|CGC1 355291.23 5.7933
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000227 4782975 Isolate China Asia
Gene Location Start: 27352;  End: 36807  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000227_04516.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd17655 A_NRPS_Bac 0.0 480 963 1 490
bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd17656 A_NRPS_ProA 0.0 2568 3045 1 479
gramicidin S synthase 2, also known as ATP-dependent proline adenylase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) contains gramicidin S synthase 2 (also known as ATP-dependent proline adenylase or proline activase or ProA). ProA is a multifunctional enzyme involved in synthesis of the cyclic peptide antibiotic gramicidin S and able to activate and polymerize the amino acids proline, valine, ornithine and leucine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd17651 A_NRPS_VisG_like 0.0 2561 3045 1 491
similar to adenylation domain of virginiamycin S synthetase. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes virginiamycin S synthetase (VisG) in Streptomyces virginiae; VisG is involved in virginiamycin S (VS) biosynthesis as the provider of an L-pheGly molecule, a highly specific substrate for the last condensation step by VisF. This family also includes linear gramicidin synthetase B (LgrB) in Brevibacillus brevis. Substrate specificity analysis using residues of the substrate-binding pockets of all 16 adenylation domains has shown good agreement of the substrate amino acids predicted with the sequence of linear gramicidin. The adenylation (A) domain of NRPS recognizes a specific amino acid or hydroxy acid and activates it as an (amino) acyl adenylate by hydrolysis of ATP. The activated acyl moiety then forms a thioester bond to the enzyme-bound cofactor phosphopantetheine of a peptidyl carrier protein domain. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd17655 A_NRPS_Bac 0.0 2559 3047 1 489
bacitracin synthetase and related proteins. This family of the adenylation (A) domain of nonribosomal peptide synthases (NRPS) includes bacitracin synthetases 1, 2, and 3 (BA1, also known as ATP-dependent cysteine adenylase or cysteine activase, BA2, also known as ATP-dependent lysine adenylase or lysine activase, and BA3, also known as ATP-dependent isoleucine adenylase or isoleucine activase) in Bacilli. Bacitracin is a mixture of related cyclic peptides used as a polypeptide antibiotic. This family also includes gramicidin synthetase 1 involved in synthesis of the cyclic peptide antibiotic gramicidin S via activation of phenylalanine. NRPSs are large multifunctional enzymes which synthesize many therapeutically useful peptides in bacteria and fungi via a template-directed, nucleic acid independent nonribosomal mechanism. These natural products include antibiotics, immunosuppressants, plant and animal toxins, and enzyme inhibitors. NRPS has a distinct modular structure in which each module is responsible for the recognition, activation, and in some cases, modification of a single amino acid residue of the final peptide product. The modules can be subdivided into domains that catalyze specific biochemical reactions.
cd19531 LCL_NRPS-like 0.0 1064 1476 1 427
LCL-type Condensation (C) domain of non-ribosomal peptide synthetases(NRPSs) and similar domains including the C-domain of SgcC5, a free-standing NRPS with both ester- and amide- bond forming activity. LCL-type Condensation (C) domains catalyze peptide bond formation between two L-amino acids, ((L)C(L)). C-domains of NRPSs catalyze peptide bond formation within (usually) large multi-modular enzymatic complexes. NRPS can use a large variety of acyl monomers (approximately 500 different possible monomer substrates as opposed to the 20 standard amino acids in ribosomal protein synthesis) to construct bioactive secondary metabolites of 2 to 18 units long (with various activities such as antibiotic, antifungal, antitumor and immunosuppression). In addition to the LCL-type, there are various subtypes of C-domains such as the DCL-type which links an L-amino acid to the D-amino acid at the end of a growing peptide, starter C-domains which acylate the first amino acid with a beta-hydroxy carboxylic acid, and heterocyclization (Cyc) domains which catalyze both peptide bond formation and cyclization of Cys, Ser, or Thr residues. Typically, an NRPS module consists of an adenylation domain, a peptidyl carrier protein (PCP) domain (also known as thiolation (T) domain) and a C-domain. NRPS modules may also include specialized domains such as the terminal-module thioesterase (Te) domain that releases the product via hydrolysis or macrocyclization and any of various C-domain family members such as the epimerization (E) domain, the ester-bond forming C-domain, dual E/C (epimerization and condensation) domains, and the X-domain. Streptomyces globisporus SgcC5 is a free-standing NRPS condensation enzyme (rather than a modular NRPS), which catalyzes the condensation between the SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and (R)-1phenyl-1,2-ethanediol, forming an ester bond, during the synthesis of the chromoprotein enediyne antitumor antibiotic C-1027. It has some acceptor substrate promiscuity as it has been shown to also catalyze the formation of an amide bond between SgcC2-tethered (S)-3-chloro-5-hydroxy-beta-tyrosine and a mimic of the enediyne core acceptor substrate having an amine at its C-2 position. C-domains typically have a conserved HHxxxD motif at the active site; mutations in this motif can abolish or diminish condensation activity. An HHxx[SAG]DGxSx(6)[ED] motif is characteristic of LCL-type C-domains.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QND46664.1 0.0 554 3146 1 2697
BAY90071.1 0.0 210 3139 317 3295
BAZ00088.1 0.0 210 3139 318 3304
BAZ75991.1 0.0 210 3139 318 3304
BAY30132.1 0.0 210 3139 318 3306

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6MFY_A 0.0 473 2008 202 1716
Crystalstructure of a 5-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis],6MG0_A Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis],6MG0_B Crystal structure of a 5-domain construct of LgrA in the thiolation state [Brevibacillus parabrevis]
6MFZ_A 0.0 473 2095 202 1803
Crystalstructure of dimodular LgrA in a condensation state [Brevibacillus parabrevis],6MFZ_B Crystal structure of dimodular LgrA in a condensation state [Brevibacillus parabrevis]
6P1J_A 6.02e-239 1065 2004 6 964
Thestructure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae],6P1J_B The structure of condensation and adenylation domains of teixobactin-producing nonribosomal peptide synthetase Txo2 serine module [Eleftheria terrae]
6MFW_A 9.43e-219 1506 2536 202 1205
Crystalstructure of a 4-domain construct of LgrA in the substrate donation state [Brevibacillus parabrevis]
6MFX_A 4.53e-218 1506 2536 202 1205
Crystalstructure of a 4-domain construct of a mutant of LgrA in the substrate donation state [Brevibacillus parabrevis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P39846 0.0 1062 3124 8 2073
Plipastatin synthase subunit B OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsB PE=1 SV=1
Q04747 0.0 29 3140 7 3118
Surfactin synthase subunit 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=srfAB PE=1 SV=3
P94459 0.0 29 3140 8 3117
Plipastatin synthase subunit D OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsD PE=1 SV=2
P39847 0.0 1059 3140 1 2086
Plipastatin synthase subunit C OS=Bacillus subtilis (strain 168) OX=224308 GN=ppsC PE=1 SV=2
Q70LM4 0.0 19 3128 1044 4673
Linear gramicidin synthase subunit D OS=Brevibacillus parabrevis OX=54914 GN=lgrD PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000086 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000227_04516.