logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000406_01452

You are here: Home > Sequence: MGYG000000406_01452

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UBA10677 sp003533505
Lineage Bacteria; Firmicutes_A; Clostridia_A; Christensenellales; CAG-552; UBA10677; UBA10677 sp003533505
CAZyme ID MGYG000000406_01452
CAZy Family GH13
CAZyme Description Amylopullulanase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
594 MGYG000000406_14|CGC1 66877.21 4.9594
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000406 1936952 MAG Sweden Europe
Gene Location Start: 7846;  End: 9630  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000406_01452.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 174 499 1.2e-117 0.9936708860759493

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11338 AmyAc_CMD 4.67e-173 122 535 1 389
Alpha amylase catalytic domain found in cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK10785 PRK10785 3.90e-96 124 566 123 568
maltodextrin glucosidase; Provisional
PRK14510 PRK14510 1.39e-84 1 525 1 566
bifunctional glycogen debranching protein GlgX/4-alpha-glucanotransferase.
cd11316 AmyAc_bac2_AmyA 3.66e-53 157 510 11 351
Alpha amylase catalytic domain found in bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes Chloroflexi, Dictyoglomi, and Fusobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 1.29e-46 123 511 1 376
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QQR32000.1 1.25e-165 9 543 6 553
ANU56099.1 1.25e-165 9 543 6 553
ASB42775.1 1.25e-165 9 543 6 553
CAB1243760.1 2.12e-164 12 565 9 582
CAB1239245.1 2.90e-163 9 556 6 568

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1JF6_A 4.52e-71 76 561 82 547
ChainA, ALPHA AMYLASE II [Thermoactinomyces vulgaris],1JF6_B Chain B, ALPHA AMYLASE II [Thermoactinomyces vulgaris]
1BVZ_A 6.30e-71 76 561 82 547
Alpha-amylaseIi (tvaii) From Thermoactinomyces Vulgaris R-47 [Thermoactinomyces vulgaris],1BVZ_B Alpha-amylase Ii (tvaii) From Thermoactinomyces Vulgaris R-47 [Thermoactinomyces vulgaris],1JI2_A Improved X-ray Structure of Thermoactinomyces vulgaris R-47 alpha-Amylase 2 [Thermoactinomyces vulgaris],1JI2_B Improved X-ray Structure of Thermoactinomyces vulgaris R-47 alpha-Amylase 2 [Thermoactinomyces vulgaris],3A6O_A Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/acarbose complex [Thermoactinomyces vulgaris],3A6O_B Crystal structure of Thermoactinomyces vulgaris R-47 alpha-amylase 2/acarbose complex [Thermoactinomyces vulgaris]
1WZM_A 1.71e-70 76 561 82 547
ChainA, Alpha-amylase II [Thermoactinomyces vulgaris],1WZM_B Chain B, Alpha-amylase II [Thermoactinomyces vulgaris]
1JF5_A 1.71e-70 76 561 82 547
ChainA, ALPHA AMYLASE II [Thermoactinomyces vulgaris],1JF5_B Chain B, ALPHA AMYLASE II [Thermoactinomyces vulgaris]
1WZK_A 3.32e-70 76 561 82 547
ChainA, Alpha-amylase II [Thermoactinomyces vulgaris],1WZK_B Chain B, Alpha-amylase II [Thermoactinomyces vulgaris]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P36905 2.11e-93 3 530 256 826
Amylopullulanase OS=Thermoanaerobacterium saccharolyticum OX=28896 GN=apu PE=3 SV=2
P16950 2.40e-91 3 530 253 826
Amylopullulanase OS=Thermoanaerobacter thermohydrosulfuricus OX=1516 GN=apu PE=1 SV=1
P38939 3.37e-91 3 530 253 825
Amylopullulanase OS=Thermoanaerobacter pseudethanolicus (strain ATCC 33223 / 39E) OX=340099 GN=apu PE=1 SV=2
P38536 1.19e-90 3 530 256 825
Amylopullulanase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyB PE=3 SV=2
Q08751 3.45e-70 76 561 82 547
Neopullulanase 2 OS=Thermoactinomyces vulgaris OX=2026 GN=tvaII PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000052 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000406_01452.