You are browsing environment: HUMAN GUT

CAZyme Information: MGYG000000435_00723

You are here: Home > Sequence: MGYG000000435_00723

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species RUG131 sp900549975
Lineage Bacteria; Firmicutes; Bacilli; RFN20; CAG-826; RUG131; RUG131 sp900549975
CAZyme ID MGYG000000435_00723
CAZy Family GT4
CAZyme Description Processive diacylglycerol alpha-glucosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
333 MGYG000000435_2|CGC4 38521.16 9.9193
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000435 1948428 MAG Sweden Europe
Gene Location Start: 304435;  End: 305436  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000435_00723.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 157 300 1.6e-18 0.925

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 6.92e-25 99 329 134 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 5.97e-24 38 332 78 378
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03817 GT4_UGDG-like 1.59e-23 97 331 139 372
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
pfam00534 Glycos_transf_1 1.07e-14 161 311 1 158
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03798 GT4_WlbH-like 2.32e-14 93 331 138 376
Bordetella parapertussis WlbH and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Staphylococcus aureus CapJ may be involved in capsule polysaccharide biosynthesis. WlbH in Bordetella parapertussis has been shown to be required for the biosynthesis of a trisaccharide that, when attached to the B. pertussis lipopolysaccharide (LPS) core (band B), generates band A LPS.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AMC92494.1 1.25e-121 1 332 1 331
VEU82277.1 1.34e-121 1 333 1 329
QXM02977.1 1.37e-119 1 333 1 333
APE40609.1 1.94e-119 1 333 1 333
AZK43783.1 2.88e-119 1 333 1 332

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8KQL6 4.28e-113 1 332 1 328
Processive diacylglycerol alpha-glucosyltransferase OS=Acholeplasma laidlawii OX=2148 GN=dgs PE=1 SV=1
Q8DPV9 1.83e-13 16 277 50 314
Alpha-galactosylglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=cpoA PE=1 SV=1
Q93P60 2.92e-12 40 299 83 353
Alpha-monoglucosyldiacylglycerol synthase OS=Acholeplasma laidlawii OX=2148 GN=mgs PE=1 SV=1
Q59002 2.38e-09 103 268 147 316
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
Q8CWR6 3.57e-07 40 263 82 311
Alpha-monoglucosyldiacylglycerol synthase OS=Streptococcus pneumoniae (strain ATCC BAA-255 / R6) OX=171101 GN=spr0982 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

1.000081 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000435_00723.