logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000441_01695

You are here: Home > Sequence: MGYG000000441_01695

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-312 sp900545705
Lineage Bacteria; Verrucomicrobiota; Verrucomicrobiae; Opitutales; CAG-312; CAG-312; CAG-312 sp900545705
CAZyme ID MGYG000000441_01695
CAZy Family GH13
CAZyme Description Glycogen debranching enzyme
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
796 MGYG000000441_14|CGC1 88765.2 5.9808
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000441 2454454 MAG Sweden Europe
Gene Location Start: 29603;  End: 31993  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000441_01695.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 368 646 1.6e-59 0.9826989619377162

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11341 AmyAc_Pullulanase_LD-like 7.63e-81 328 690 2 406
Alpha amylase catalytic domain found in Pullulanase (also called dextrinase; alpha-dextrin endo-1,6-alpha glucosidase), limit dextrinase, and related proteins. Pullulanase is an enzyme with action similar to that of isoamylase; it cleaves 1,6-alpha-glucosidic linkages in pullulan, amylopectin, and glycogen, and in alpha-and beta-amylase limit-dextrins of amylopectin and glycogen. Pullulanases are very similar to limit dextrinases, although they differ in their action on glycogen and the rate of hydrolysis of limit dextrins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR02104 pulA_typeI 1.88e-80 211 751 12 588
pullulanase, type I. Pullulan is an unusual, industrially important polysaccharide in which short alpha-1,4 chains (maltotriose) are connected in alpha-1,6 linkages. Enzymes that cleave alpha-1,6 linkages in pullulan and release maltotriose are called pullulanases although pullulan itself may not be the natural substrate. This family consists of pullulanases related to the subfamilies described in TIGR02102 and TIGR02103 but having a different domain architecture with shorter sequences. Members are called type I pullulanases.
COG1523 PulA 9.04e-79 253 710 67 598
Pullulanase/glycogen debranching enzyme [Carbohydrate transport and metabolism].
cd11326 AmyAc_Glg_debranch 2.59e-72 326 690 13 430
Alpha amylase catalytic domain found in glycogen debranching enzymes. Debranching enzymes facilitate the breakdown of glycogen through glucosyltransferase and glucosidase activity. These activities are performed by a single enzyme in mammals, yeast, and some bacteria, but by two distinct enzymes in Escherichia coli and other bacteria. Debranching enzymes perform two activities: 4-alpha-D-glucanotransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33). 4-alpha-D-glucanotransferase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. Amylo-alpha-1,6-glucosidase catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. In Escherichia coli, GlgX is the debranching enzyme and malQ is the 4-alpha-glucanotransferase. TreX, an archaeal glycogen-debranching enzyme has dual activities like mammals and yeast, but is structurally similar to GlgX. TreX exists in two oligomeric states, a dimer and tetramer. Isoamylase (EC 3.2.1.68) is one of the starch-debranching enzymes that catalyzes the hydrolysis of alpha-1,6-glucosidic linkages specific in alpha-glucans such as amylopectin or glycogen and their beta-limit dextrins. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK03705 PRK03705 3.44e-43 211 613 12 452
glycogen debranching protein GlgX.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QYY35929.1 2.34e-196 23 796 28 809
ADE54637.1 1.17e-187 67 794 76 807
ATC63384.1 1.31e-178 67 796 79 810
QXD22729.1 2.45e-176 26 794 36 812
QXD26807.1 2.45e-176 26 794 36 812

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2WAN_A 2.22e-57 144 676 247 810
Pullulanasefrom Bacillus acidopullulyticus [Bacillus acidopullulyticus]
2E8Y_A 4.94e-50 206 699 101 622
Crystalstructure of pullulanase type I from Bacillus subtilis str. 168 [Bacillus subtilis],2E8Y_B Crystal structure of pullulanase type I from Bacillus subtilis str. 168 [Bacillus subtilis],2E8Z_A Crystal structure of pullulanase type I from Bacillus subtilis str. 168 complexed with alpha-cyclodextrin [Bacillus subtilis],2E8Z_B Crystal structure of pullulanase type I from Bacillus subtilis str. 168 complexed with alpha-cyclodextrin [Bacillus subtilis],2E9B_A Crystal structure of pullulanase type I from Bacillus subtilis str. 168 complexed with maltose [Bacillus subtilis],2E9B_B Crystal structure of pullulanase type I from Bacillus subtilis str. 168 complexed with maltose [Bacillus subtilis]
3WDH_A 3.49e-47 206 690 106 614
Crystalstructure of Pullulanase from Anoxybacillus sp. LM18-11 [Anoxybacillus sp. LM18-11],3WDI_A Crystal structure of Pullulanase complexed with maltotriose from Anoxybacillus sp. LM18-11 [Anoxybacillus sp. LM18-11],3WDJ_A Crystal structure of Pullulanase complexed with maltotetraose from Anoxybacillus sp. LM18-11 [Anoxybacillus sp. LM18-11]
6JEQ_A 7.25e-45 205 699 35 567
Crystalstructure of Pullulanase from Paenibacillus barengoltzii complex with beta-cyclodextrin [Paenibacillus barengoltzii],6JFJ_A Crystal structure of Pullulanase from Paenibacillus barengoltzii complex with maltohexaose and alpha-cyclodextrin [Paenibacillus barengoltzii],6JFX_A Crystal structure of Pullulanase from Paenibacillus barengoltzii complex with maltopentaose [Paenibacillus barengoltzii],6JHF_A Crystal structure of apo Pullulanase from Paenibacillus barengoltzii [Paenibacillus barengoltzii],6JHG_A Crystal structure of apo Pullulanase from Paenibacillus barengoltzii in space group P212121 [Paenibacillus barengoltzii]
6JHI_A 7.92e-44 205 699 35 567
Crystalstructure of mutant D470A of Pullulanase from Paenibacillus barengoltzii complexed with maltotetraose [Paenibacillus barengoltzii]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C0SPA0 4.97e-49 206 699 101 622
Pullulanase OS=Bacillus subtilis (strain 168) OX=224308 GN=amyX PE=1 SV=1
O33840 2.56e-43 195 715 209 769
Pullulanase OS=Thermotoga maritima (strain ATCC 43589 / DSM 3109 / JCM 10099 / NBRC 100826 / MSB8) OX=243274 GN=pulA PE=1 SV=2
B9G434 4.51e-42 211 693 108 676
Isoamylase 3, chloroplastic OS=Oryza sativa subsp. japonica OX=39947 GN=ISA3 PE=2 SV=1
Q9M0S5 1.84e-37 211 660 93 624
Isoamylase 3, chloroplastic OS=Arabidopsis thaliana OX=3702 GN=ISA3 PE=1 SV=2
A1JSI8 4.23e-35 211 670 12 542
Glycogen debranching enzyme OS=Yersinia enterocolitica serotype O:8 / biotype 1B (strain NCTC 13174 / 8081) OX=393305 GN=glgX PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000441_01695.