Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Oscillospirales; CAG-382; UMGS1387; | |||||||||||
CAZyme ID | MGYG000000481_01995 | |||||||||||
CAZy Family | GH36 | |||||||||||
CAZyme Description | hypothetical protein | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 455; End: 2233 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH36 | 186 | 543 | 3e-32 | 0.5334302325581395 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd14791 | GH36 | 1.01e-59 | 190 | 481 | 1 | 299 | glycosyl hydrolase family 36 (GH36). GH36 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-galactosidase, alpha-N-acetylgalactosaminidase, stachyose synthase, and raffinose synthase. All GH36 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH36 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
cd06592 | GH31_NET37 | 6.66e-17 | 191 | 336 | 1 | 151 | glucosidase NET37. NET37 (also known as KIAA1161) is a human lamina-associated nuclear envelope transmembrane protein. A member of the glycosyl hydrolase family 31 (GH31) , it has been shown to be required for myogenic differentiation of C2C12 cells. Related proteins are found in eukaryotes and prokaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. |
pfam02065 | Melibiase | 1.15e-12 | 197 | 294 | 47 | 144 | Melibiase. Glycoside hydrolase families GH27, GH31 and GH36 form the glycoside hydrolase clan GH-D. Glycoside hydrolase family 36 can be split into 11 families, GH36A to GH36K. This family includes enzymes from GH36A-B and GH36D-K and from GH27. |
COG3345 | GalA | 1.83e-10 | 178 | 294 | 279 | 395 | Alpha-galactosidase [Carbohydrate transport and metabolism]. |
cd14792 | GH27 | 1.99e-06 | 193 | 276 | 2 | 84 | glycosyl hydrolase family 27 (GH27). GH27 enzymes occur in eukaryotes, prokaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-N-acetylgalactosaminidase, and 3-alpha-isomalto-dextranase. All GH27 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. GH27 members are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
QJD86820.1 | 1.05e-129 | 24 | 590 | 23 | 603 |
QJU17504.1 | 1.33e-129 | 47 | 584 | 46 | 581 |
QUO31288.1 | 1.11e-127 | 1 | 583 | 17 | 579 |
BBI31507.1 | 1.98e-127 | 64 | 587 | 61 | 592 |
CQR57728.1 | 4.53e-126 | 20 | 592 | 21 | 592 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
2YFN_A | 3.78e-11 | 191 | 335 | 329 | 478 | galactosidasedomain of alpha-galactosidase-sucrose kinase, AgaSK [[Ruminococcus] gnavus E1],2YFO_A GALACTOSIDASE DOMAIN OF ALPHA-GALACTOSIDASE-SUCROSE KINASE, AGASK, in complex with galactose [[Ruminococcus] gnavus E1] |
4FNR_A | 1.14e-07 | 194 | 291 | 332 | 429 | Crystalstructure of GH36 alpha-galactosidase AgaA from Geobacillus stearothermophilus [Geobacillus stearothermophilus],4FNR_B Crystal structure of GH36 alpha-galactosidase AgaA from Geobacillus stearothermophilus [Geobacillus stearothermophilus],4FNR_C Crystal structure of GH36 alpha-galactosidase AgaA from Geobacillus stearothermophilus [Geobacillus stearothermophilus],4FNR_D Crystal structure of GH36 alpha-galactosidase AgaA from Geobacillus stearothermophilus [Geobacillus stearothermophilus] |
6JHP_A | 3.15e-06 | 191 | 294 | 359 | 473 | Crystalstructure of the glycoside hydrolase family 36 alpha-galactosidase from Paecilomyces thermophila [Paecilomyces sp. 'thermophila'],6JHP_B Crystal structure of the glycoside hydrolase family 36 alpha-galactosidase from Paecilomyces thermophila [Paecilomyces sp. 'thermophila'],6JHP_C Crystal structure of the glycoside hydrolase family 36 alpha-galactosidase from Paecilomyces thermophila [Paecilomyces sp. 'thermophila'],6JHP_D Crystal structure of the glycoside hydrolase family 36 alpha-galactosidase from Paecilomyces thermophila [Paecilomyces sp. 'thermophila'] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
G4T4R7 | 2.34e-10 | 191 | 335 | 329 | 478 | Bifunctional alpha-galactosidase/sucrose kinase AgaSK OS=Ruminococcus gnavus OX=33038 GN=agaSK PE=1 SV=1 |
P16551 | 3.26e-09 | 166 | 296 | 266 | 397 | Alpha-galactosidase OS=Escherichia coli OX=562 GN=rafA PE=1 SV=1 |
Q9ALJ4 | 6.25e-07 | 194 | 291 | 332 | 429 | Alpha-galactosidase AgaA OS=Geobacillus stearothermophilus OX=1422 GN=agaA PE=1 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000058 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.