logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000755_01544

You are here: Home > Sequence: MGYG000000755_01544

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Campylobacter sp013416015
Lineage Bacteria; Campylobacterota; Campylobacteria; Campylobacterales; Campylobacteraceae; Campylobacter; Campylobacter sp013416015
CAZyme ID MGYG000000755_01544
CAZy Family GT4
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
377 MGYG000000755_20|CGC1 42473.83 9.0997
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000755 1680879 MAG Bangladesh Asia
Gene Location Start: 671;  End: 1804  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000755_01544.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 195 337 8.6e-29 0.925

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03804 GT4_WbaZ-like 3.18e-162 5 363 1 356
mannosyltransferase WbaZ and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. WbaZ in Salmonella enterica has been shown to possess mannosyltransferase activity.
cd03801 GT4_PimA-like 9.36e-34 60 337 53 333
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 3.96e-30 12 372 10 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03809 GT4_MtfB-like 4.88e-28 126 332 112 328
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
pfam00534 Glycos_transf_1 1.32e-26 200 337 1 144
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QLI05682.1 1.18e-274 1 377 1 377
AGZ81386.1 1.89e-146 5 374 2 369
AJB45134.1 5.39e-146 5 374 2 369
AVK80809.1 5.39e-146 5 374 2 369
QYA64618.1 7.64e-146 5 374 2 369

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5D00_A 4.28e-08 161 308 148 316
Crystalstructure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D00_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate and UMP [Bacillus subtilis subsp. subtilis str. 168],5D01_A Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168],5D01_B Crystal structure of BshA from B. subtilis complexed with N-acetylglucosaminyl-malate [Bacillus subtilis subsp. subtilis str. 168]
3OKA_A 2.33e-06 161 305 142 318
Crystalstructure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum],3OKA_B Crystal structure of Corynebacterium glutamicum PimB' in complex with GDP-Man (triclinic crystal form) [Corynebacterium glutamicum]
3OKC_A 2.40e-06 161 305 142 318
Crystalstructure of Corynebacterium glutamicum PimB' bound to GDP (orthorhombic crystal form) [Corynebacterium glutamicum],3OKP_A Crystal structure of Corynebacterium glutamicum PimB' bound to GDP-Man (orthorhombic crystal form) [Corynebacterium glutamicum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P26402 3.73e-10 149 367 129 350
Protein RfbU OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=rfbU PE=3 SV=1
Q59002 7.74e-09 162 307 151 324
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
P42982 2.33e-07 161 308 146 314
N-acetyl-alpha-D-glucosaminyl L-malate synthase OS=Bacillus subtilis (strain 168) OX=224308 GN=bshA PE=1 SV=2
Q6FJJ9 2.68e-06 161 337 162 384
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Candida glabrata (strain ATCC 2001 / CBS 138 / JCM 3761 / NBRC 0622 / NRRL Y-65) OX=284593 GN=ALG2 PE=3 SV=1
P43636 8.78e-06 127 366 130 434
Alpha-1,3/1,6-mannosyltransferase ALG2 OS=Saccharomyces cerevisiae (strain ATCC 204508 / S288c) OX=559292 GN=ALG2 PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000077 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000755_01544.