logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000824_00491

You are here: Home > Sequence: MGYG000000824_00491

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-485 sp900552315
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-485; CAG-485 sp900552315
CAZyme ID MGYG000000824_00491
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
418 46763.99 8.4084
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000824 2120674 MAG China Asia
Gene Location Start: 16545;  End: 17801  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000824_00491.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 230 369 6.1e-18 0.86875

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03825 GT4_WcaC-like 7.75e-65 1 415 1 364
putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Escherichia coli WcaC has been predicted to function in colanic acid biosynthesis. WcfI in Bacteroides fragilis has been shown to be involved in the capsular polysaccharide biosynthesis.
cd03801 GT4_PimA-like 2.17e-29 2 413 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 8.07e-24 155 418 122 380
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03808 GT4_CapM-like 1.96e-18 100 408 83 357
capsular polysaccharide biosynthesis glycosyltransferase CapM and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. CapM in Staphylococcus aureus is required for the synthesis of type 1 capsular polysaccharides.
cd03811 GT4_GT28_WabH-like 1.72e-17 2 389 1 340
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD36841.1 5.60e-114 1 416 1 414
AHF12552.1 1.37e-95 1 417 1 417
QCP72361.1 9.33e-91 2 417 19 432
QCD38673.1 9.33e-91 2 417 19 432
QCD41807.1 1.10e-88 2 417 23 436

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6N1X_A 5.21e-08 245 418 212 377
ChainA, Glycosyltransferase [Staphylococcus aureus subsp. aureus CN1]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
A1R8N8 1.76e-07 13 405 20 389
D-inositol 3-phosphate glycosyltransferase OS=Paenarthrobacter aurescens (strain TC1) OX=290340 GN=mshA PE=3 SV=1
D5UJ42 1.03e-06 304 412 336 436
D-inositol 3-phosphate glycosyltransferase OS=Cellulomonas flavigena (strain ATCC 482 / DSM 20109 / BCRC 11376 / JCM 18109 / NBRC 3775 / NCIMB 8073 / NRS 134) OX=446466 GN=mshA PE=3 SV=1
C8XA09 3.31e-06 233 406 249 422
D-inositol 3-phosphate glycosyltransferase OS=Nakamurella multipartita (strain ATCC 700099 / DSM 44233 / CIP 104796 / JCM 9543 / NBRC 105858 / Y-104) OX=479431 GN=mshA PE=3 SV=1
Q9I1V0 4.66e-06 305 418 397 503
Glycogen synthase OS=Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) OX=208964 GN=glgA PE=3 SV=1
D1BZ82 5.36e-06 234 412 235 407
D-inositol 3-phosphate glycosyltransferase OS=Xylanimonas cellulosilytica (strain DSM 15894 / CECT 5975 / LMG 20990 / XIL07) OX=446471 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000085 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000824_00491.