logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000000941_00448

You are here: Home > Sequence: MGYG000000941_00448

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-1031 sp000431215
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-1031; CAG-1031 sp000431215
CAZyme ID MGYG000000941_00448
CAZy Family GH0
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
754 MGYG000000941_5|CGC2 83661.06 6.1759
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000000941 2489616 MAG Germany Europe
Gene Location Start: 47306;  End: 49570  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000000941_00448.

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04083 CBM35_Lmo2446-like 3.51e-16 637 750 26 125
Carbohydrate Binding Module 35 (CBM35) domains similar to Lmo2446. This family includes carbohydrate binding module 35 (CBM35) domains that are appended to several carbohydrate binding enzymes. Some CBM35 domains belonging to this family are appended to glycoside hydrolase (GH) family domains, including glycoside hydrolase family 31 (GH31), for example the CBM35 domain of Lmo2446, an uncharacterized protein from Listeria monocytogenes EGD-e. These CBM35s are non-catalytic carbohydrate binding domains that facilitate the strong binding of the GH catalytic modules with their dedicated, insoluble substrates. GH31 has a wide range of hydrolytic activities such as alpha-glucosidase, alpha-xylosidase, 6-alpha-glucosyltransferase, or alpha-1,4-glucan lyase, cleaving a terminal carbohydrate moiety from a substrate that may be a starch or a glycoprotein. Most characterized GH31 enzymes are alpha-glucosidases.
pfam17389 Bac_rhamnosid6H 5.32e-08 162 334 78 244
Bacterial alpha-L-rhamnosidase 6 hairpin glycosidase domain. This family consists of bacterial rhamnosidase A and B enzymes. L-Rhamnose is abundant in biomass as a common constituent of glycolipids and glycosides, such as plant pigments, pectic polysaccharides, gums or biosurfactants. Some rhamnosides are important bioactive compounds. For example, terpenyl glycosides, the glycosidic precursor of aromatic terpenoids, act as important flavouring substances in grapes. Other rhamnosides act as cytotoxic rhamnosylated terpenoids, as signal substances in plants or play a role in the antigenicity of pathogenic bacteria.
COG3408 GDB1 2.80e-07 118 384 281 555
Glycogen debranching enzyme (alpha-1,6-glucosidase) [Carbohydrate transport and metabolism].
cd04082 CBM35_pectate_lyase-like 1.63e-06 655 727 42 108
Carbohydrate Binding Module family 35 (CBM35), pectate lyase-like; appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. This family includes carbohydrate binding module family 35 (CBM35) domains that are non-catalytic carbohydrate binding domains that are appended mainly to enzymes that bind mannan (Man), xylan, glucuronic acid (GlcA) and possibly glucans. Included in this family are CBM35s of pectate lyases, including pectate lyase 10A from Cellvibrio japonicas, these enzymes release delta-4,5-anhydrogalaturonic acid (delta4,5-GalA) from pectin, thus identifying a signature molecule for plant cell wall degradation. CBM35s are unique in that they display conserved specificity through extensive sequence similarity but divergent function through their appended catalytic modules. They are known to bind alpha-D-galactose (Gal), mannan (Man), xylan, glucuronic acid (GlcA), a beta-polymer of mannose, and possibly glucans, forming four subfamilies based on general ligand specificities (galacto, urono, manno, and gluco configurations). In contrast to most CBMs that are generally rigid proteins, CBM35 undergoes significant conformational change upon ligand binding. Some CBM35s bind their ligands in a calcium-dependent manner, especially those binding uronic acids.
cd02795 CBM6-CBM35-CBM36_like 1.50e-05 653 738 41 119
Carbohydrate Binding Module 6 (CBM6) and CBM35_like superfamily. Carbohydrate binding module family 6 (CBM6, family 6 CBM), also known as cellulose binding domain family VI (CBD VI), and related CBMs (CBM35 and CBM36). These are non-catalytic carbohydrate binding domains found in a range of enzymes that display activities against a diverse range of carbohydrate targets, including mannan, xylan, beta-glucans, cellulose, agarose, and arabinans. These domains facilitate the strong binding of the appended catalytic modules to their dedicated, insoluble substrates. Many of these CBMs are associated with glycoside hydrolase (GH) domains. CBM6 is an unusual CBM as it represents a chimera of two distinct binding sites with different modes of binding: binding site I within the loop regions and binding site II on the concave face of the beta-sandwich fold. CBM36s are calcium-dependent xylan binding domains. CBM35s display conserved specificity through extensive sequence similarity, but divergent function through their appended catalytic modules. This alignment model also contains the C-terminal domains of bacterial insecticidal toxins, where they may be involved in determining insect specificity through carbohydrate binding functionality.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AWG27199.1 2.99e-199 69 748 212 888
AYA38918.1 2.98e-198 72 746 236 908
AKQ46615.1 3.21e-198 71 746 227 898
QEC42842.1 5.48e-197 72 746 217 888
ARS34527.1 1.69e-196 72 746 223 892

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      help

has no Swissprot hit.

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000348 0.998766 0.000235 0.000218 0.000225 0.000189

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000000941_00448.