logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001040_01849

You are here: Home > Sequence: MGYG000001040_01849

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Prevotella sp900554045
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Prevotella; Prevotella sp900554045
CAZyme ID MGYG000001040_01849
CAZy Family GH32
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
814 MGYG000001040_193|CGC1 88316.78 4.8959
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001040 2860396 MAG Denmark Europe
Gene Location Start: 8162;  End: 10606  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001040_01849.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 261 569 3.1e-58 0.9965870307167235

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08996 GH32_FFase 2.38e-75 268 559 2 281
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
smart00640 Glyco_32 1.48e-64 261 691 1 436
Glycosyl hydrolases family 32.
COG1621 SacC 7.23e-57 257 729 29 486
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
pfam00251 Glyco_hydro_32N 9.62e-52 261 569 1 308
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.
cd18624 GH32_Fruct1-like 1.41e-34 268 559 2 296
glycoside hydrolase family 32 protein such as Arabidopsis thaliana cell-wall invertase 1 (AtBFruct1;Fruct1;AtcwINV1;At3g13790). This subfamily of glycosyl hydrolase family GH32 includes fructan beta-(2,1)-fructosidase and fructan 1-exohydrolase IIa (1-FEH IIa, EC 3.2.1.153), cell-wall invertase 1 (EC 3.2.1.26), sucrose:fructan 6-fructosyltransferase (6-Sst/6-Dft, EC 2.4.1.10), and levan fructosyltransferases (EC 2.4.1.-) among others. This enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AXV49252.1 1.39e-234 46 731 336 1001
QUB90817.1 8.80e-234 46 731 317 982
QUB92629.1 2.56e-233 9 731 1 691
AEA21196.1 9.38e-231 9 731 1 691
QUB89002.1 9.38e-231 9 731 1 691

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7VCO_A 1.27e-32 258 727 27 485
ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara]
1UYP_A 8.91e-26 255 701 1 406
Thethree-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_B The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_C The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_D The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_E The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8],1UYP_F The three-dimensional structure of beta-fructosidase (invertase) from Thermotoga maritima [Thermotoga maritima MSB8]
1W2T_A 2.15e-25 255 701 1 406
beta-fructosidasefrom Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_B beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_C beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_D beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_E beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8],1W2T_F beta-fructosidase from Thermotoga maritima in complex with raffinose [Thermotoga maritima MSB8]
6NU7_A 5.28e-25 260 691 36 452
Structureof sucrose-6-phosphate hydrolase from Lactobacillus gasseri [Lactobacillus gasseri 224-1],6NU8_A Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri in complex with fructose [Lactobacillus gasseri 224-1]
2QQU_A 9.63e-22 257 580 5 342
ChainA, Beta-fructofuranosidase [Arabidopsis thaliana]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q5JJV0 1.51e-31 257 727 60 580
Beta-fructofuranosidase, insoluble isoenzyme 4 OS=Oryza sativa subsp. japonica OX=39947 GN=CIN4 PE=2 SV=1
Q56UD0 9.00e-31 257 727 38 571
Beta-fructofuranosidase, insoluble isoenzyme 6 OS=Oryza sativa subsp. japonica OX=39947 GN=CIN6 PE=2 SV=1
B6DXP5 2.20e-30 252 727 54 580
Fructan 1-exohydrolase OS=Leymus chinensis OX=52714 GN=1-FEH PE=2 SV=1
B6DZC8 2.85e-30 252 727 56 582
Fructan 1-exohydrolase w3 OS=Triticum aestivum OX=4565 GN=1-FEHw3 PE=1 SV=1
Q84LA1 5.07e-30 257 727 61 582
Fructan 1-exohydrolase w2 OS=Triticum aestivum OX=4565 GN=1-FEHw2 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.725964 0.259984 0.012088 0.001127 0.000314 0.000530

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001040_01849.