logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001082_01527

You are here: Home > Sequence: MGYG000001082_01527

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Ruminococcus_E sp900755995
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; Ruminococcus_E; Ruminococcus_E sp900755995
CAZyme ID MGYG000001082_01527
CAZy Family GH13
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
797 89383.57 4.2832
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001082 2310000 MAG Sweden Europe
Gene Location Start: 30643;  End: 33036  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.1 3.2.1.98

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 182 628 1.4e-134 0.997624703087886

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11339 AmyAc_bac_CMD_like_2 9.57e-114 143 691 1 344
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11320 AmyAc_AmyMalt_CGTase_like 1.34e-38 141 622 1 348
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 1.24e-31 183 623 1 326
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
COG0366 AmyA 6.20e-30 147 721 3 475
Glycosidase [Carbohydrate transport and metabolism].
cd11340 AmyAc_bac_CMD_like_3 1.40e-29 138 628 1 357
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCT07168.1 0.0 1 797 1 795
QCT07981.1 1.67e-267 1 797 1 747
QEH70845.1 1.33e-255 43 797 250 963
BCJ94880.1 2.03e-239 34 797 125 849
AET61000.1 2.97e-225 90 797 320 948

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5A2A_A 1.20e-16 143 263 7 119
CrystalStructure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis]
5A2B_A 1.50e-16 143 263 41 153
CrystalStructure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis],5A2C_A Crystal Structure of Anoxybacillus Alpha-amylase Provides Insights into a New Glycosyl Hydrolase Subclass [Anoxybacillus ayderensis]
6SAU_A 5.16e-16 183 264 58 137
ChainA, alpha amylase [Cordyceps farinosa],6SAU_B Chain B, alpha amylase [Cordyceps farinosa]
7P4W_A 9.85e-16 137 266 1 127
ChainA, Alpha-amylase [Aspergillus oryzae]
2GUY_A 9.94e-16 137 266 1 127
Orthorhombiccrystal structure (space group P21212) of Aspergillus niger alpha-amylase at 1.6 A resolution [Aspergillus oryzae],2GVY_A Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 A resolution [Aspergillus oryzae],2GVY_B Monoclinic crystal form of Aspergillus niger alpha-amylase in complex with maltose at 1.8 A resolution [Aspergillus oryzae],3KWX_A Chemically modified Taka alpha-amylase [Aspergillus oryzae],3VX0_A Crystal Structure of alpha-amylase from Aspergillus oryzae [Aspergillus oryzae RIB40],3VX1_A Crystal Structure of alpha-Amylase from Aspergillus oryzae [Aspergillus oryzae RIB40],6TAA_A Structure And Molecular Model Refinement Of Aspergillus Oryzae (Taka) Alpha-Amylase: An Application Of The Simulated-Annealing Method [Aspergillus oryzae],7TAA_A Family 13 Alpha Amylase In Complex With Acarbose [Aspergillus oryzae]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P21543 7.37e-28 135 765 736 1185
Beta/alpha-amylase OS=Paenibacillus polymyxa OX=1406 PE=1 SV=1
Q05884 4.48e-25 183 741 98 583
Alpha-amylase OS=Streptomyces lividans OX=1916 GN=amy PE=1 SV=1
P08704 1.01e-19 140 765 38 538
Cyclomaltodextrin glucanotransferase OS=Klebsiella oxytoca OX=571 GN=cgt PE=3 SV=1
P19531 4.24e-15 129 422 26 265
Maltogenic alpha-amylase OS=Geobacillus stearothermophilus OX=1422 GN=amyM PE=1 SV=2
O14154 4.74e-15 134 264 20 147
Alpha-amylase mde5 OS=Schizosaccharomyces pombe (strain 972 / ATCC 24843) OX=284812 GN=mde5 PE=2 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000260 0.999064 0.000188 0.000168 0.000151 0.000141

TMHMM  Annotations      download full data without filtering help

start end
7 29