logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001169_01427

You are here: Home > Sequence: MGYG000001169_01427

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Acutalibacteraceae; Acutalibacter;
CAZyme ID MGYG000001169_01427
CAZy Family GH13
CAZyme Description Sucrose phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
462 53143.94 4.7397
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001169 2128230 MAG Austria Europe
Gene Location Start: 12;  End: 1400  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.7 2.4.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 10 351 4.3e-109 0.9970845481049563

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
TIGR03852 sucrose_gtfA 0.0 2 449 23 469
sucrose phosphorylase. In the forward direction, this enzyme uses phosphate to cleave sucrose into D-fructose + alpha-D-glucose 1-phosphate. Characterized representatives from Streptococcus mutans and Bifidobacterium adolescentis represent well-separated branches of a molecular phylogenetic tree. In S. mutans, the region including this gene has been associated with neighboring transporter genes and multiple sugar metabolism.
cd11355 AmyAc_Sucrose_phosphorylase 0.0 1 414 23 433
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11343 AmyAc_Sucrose_phosphorylase-like 2.37e-161 1 414 27 445
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK13840 PRK13840 2.21e-156 1 461 25 487
sucrose phosphorylase; Provisional
cd11356 AmyAc_Sucrose_phosphorylase-like_1 2.34e-84 2 413 30 447
Alpha amylase catalytic domain found in sucrose phosphorylase-like proteins (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AYQ75142.1 3.25e-240 1 449 27 476
BCG61532.1 1.33e-171 1 456 26 477
AKG36720.1 1.53e-170 1 461 26 482
AIQ15040.1 3.07e-170 1 461 26 482
AHV99537.1 1.24e-169 1 461 26 482

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6S9V_A 2.27e-120 1 456 40 496
Crystalstructure of sucrose 6F-phosphate phosphorylase from Thermoanaerobacter thermosaccharolyticum [Thermoanaerobacterium thermosaccharolyticum DSM 571],6S9V_B Crystal structure of sucrose 6F-phosphate phosphorylase from Thermoanaerobacter thermosaccharolyticum [Thermoanaerobacterium thermosaccharolyticum DSM 571]
2GDV_A 1.04e-97 1 419 25 449
Sucrosephosphorylase from BIFIDOBACTERIUM ADOLESCENTIS reacted with sucrose [Bifidobacterium adolescentis],2GDV_B Sucrose phosphorylase from BIFIDOBACTERIUM ADOLESCENTIS reacted with sucrose [Bifidobacterium adolescentis]
5MB2_B 1.63e-96 1 419 25 449
Structureof sucrose phosphorylase from Bifidobacterium adolescentis bound to nigerose [Bifidobacterium adolescentis]
6FME_A 1.72e-96 1 419 26 450
Structureof sucrose phosphorylase from Bifidobacterium adolescentis bound to glycosylated resveratrol [Bifidobacterium adolescentis ATCC 15703],6FME_B Structure of sucrose phosphorylase from Bifidobacterium adolescentis bound to glycosylated resveratrol [Bifidobacterium adolescentis ATCC 15703]
5C8B_B 2.16e-96 1 419 27 451
Structuralinsights into the redesign of a sucrose phosphorylase by induced loop repositioning [Bifidobacterium adolescentis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P10249 4.56e-147 2 451 27 475
Sucrose phosphorylase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=gtfA PE=1 SV=4
Q59495 3.53e-138 1 457 26 480
Sucrose phosphorylase OS=Leuconostoc mesenteroides OX=1245 PE=1 SV=1
E4PMA5 3.48e-122 1 460 26 478
Glucosylglycerol phosphorylase OS=Marinobacter adhaerens (strain DSM 23420 / HP15) OX=225937 GN=gtfA PE=1 SV=1
D9TT09 8.08e-120 1 456 26 482
Sucrose 6(F)-phosphate phosphorylase OS=Thermoanaerobacterium thermosaccharolyticum (strain ATCC 7956 / DSM 571 / NCIMB 9385 / NCA 3814 / NCTC 13789 / WDCM 00135 / 2032) OX=580327 GN=spp PE=1 SV=1
P33910 2.66e-109 1 448 25 474
Sucrose phosphorylase OS=Agrobacterium vitis OX=373 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000058 0.000010 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001169_01427.