Species | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Lineage | Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; CAG-56; | |||||||||||
CAZyme ID | MGYG000001219_00754 | |||||||||||
CAZy Family | GH32 | |||||||||||
CAZyme Description | Sucrose-6-phosphate hydrolase | |||||||||||
CAZyme Property |
|
|||||||||||
Genome Property |
|
|||||||||||
Gene Location | Start: 1784; End: 3217 Strand: + |
Family | Start | End | Evalue | family coverage |
---|---|---|---|---|
GH32 | 33 | 333 | 3.8e-91 | 0.962457337883959 |
Cdd ID | Domain | E-Value | qStart | qEnd | sStart | sEnd | Domain Description |
---|---|---|---|---|---|---|---|
cd18623 | GH32_ScrB-like | 2.97e-154 | 39 | 334 | 1 | 289 | glycoside hydrolase family 32 sucrose 6 phosphate hydrolase (sucrase). Glycosyl hydrolase family GH32 subgroup contains sucrose-6-phosphate hydrolase (sucrase, EC:3.2.1.26) among others. The enzyme cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose. These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
TIGR01322 | scrB_fam | 1.98e-132 | 20 | 448 | 5 | 444 | sucrose-6-phosphate hydrolase. [Energy metabolism, Biosynthesis and degradation of polysaccharides] |
COG1621 | SacC | 9.32e-132 | 8 | 465 | 4 | 478 | Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism]. |
pfam00251 | Glyco_hydro_32N | 1.97e-108 | 33 | 332 | 1 | 297 | Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure. |
cd08996 | GH32_FFase | 2.26e-101 | 39 | 332 | 1 | 281 | Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End |
---|---|---|---|---|---|
CCG05878.1 | 1.04e-167 | 1 | 448 | 1 | 444 |
QEH67471.1 | 1.31e-162 | 1 | 474 | 1 | 479 |
ADZ81804.1 | 1.59e-158 | 1 | 474 | 1 | 479 |
CED94068.1 | 6.42e-158 | 1 | 469 | 1 | 477 |
QCU01937.1 | 4.10e-157 | 1 | 449 | 1 | 449 |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
7VCO_A | 1.55e-79 | 32 | 448 | 29 | 459 | ChainA, Sucrose-6-phosphate hydrolase [Frischella perrara],7VCP_A Chain A, Sucrose-6-phosphate hydrolase [Frischella perrara] |
7BWB_A | 2.51e-72 | 22 | 447 | 41 | 460 | Bombyxmori GH32 beta-fructofuranosidase BmSUC1 [Bombyx mori] |
7BWC_A | 3.77e-71 | 22 | 447 | 41 | 460 | Bombyxmori GH32 beta-fructofuranosidase BmSUC1 mutant D63A in complex with sucrose [Bombyx mori] |
6NU7_A | 6.72e-61 | 20 | 452 | 24 | 467 | Structureof sucrose-6-phosphate hydrolase from Lactobacillus gasseri [Lactobacillus gasseri 224-1],6NU8_A Structure of sucrose-6-phosphate hydrolase from Lactobacillus gasseri in complex with fructose [Lactobacillus gasseri 224-1] |
3PIG_A | 1.54e-59 | 32 | 450 | 43 | 488 | beta-fructofuranosidasefrom Bifidobacterium longum [Bifidobacterium longum],3PIG_B beta-fructofuranosidase from Bifidobacterium longum [Bifidobacterium longum],3PIJ_A beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum],3PIJ_B beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum] |
Hit ID | E-Value | Query Start | Query End | Hit Start | Hit End | Description |
---|---|---|---|---|---|---|
P07819 | 2.34e-106 | 16 | 464 | 15 | 471 | Sucrose-6-phosphate hydrolase OS=Bacillus subtilis (strain 168) OX=224308 GN=sacA PE=3 SV=2 |
P27217 | 1.49e-94 | 18 | 458 | 16 | 449 | Sucrose-6-phosphate hydrolase OS=Klebsiella pneumoniae OX=573 GN=scrB PE=1 SV=3 |
P40714 | 3.92e-91 | 31 | 449 | 27 | 451 | Sucrose-6-phosphate hydrolase OS=Escherichia coli OX=562 GN=cscA PE=3 SV=1 |
P37075 | 2.74e-88 | 18 | 458 | 16 | 449 | Sucrose-6-phosphate hydrolase OS=Salmonella typhimurium OX=90371 GN=scrB PE=3 SV=1 |
A1STJ9 | 2.33e-83 | 29 | 455 | 96 | 522 | Probable sucrose-6-phosphate hydrolase OS=Psychromonas ingrahamii (strain 37) OX=357804 GN=Ping_0974 PE=3 SV=1 |
Other | SP_Sec_SPI | LIPO_Sec_SPII | TAT_Tat_SPI | TATLIP_Sec_SPII | PILIN_Sec_SPIII |
---|---|---|---|---|---|
1.000047 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
Copyright 2022 © YIN LAB, UNL. All rights reserved. Designed by Jinfang Zheng and Boyang Hu. Maintained by Yanbin Yin.