logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001269_01229

You are here: Home > Sequence: MGYG000001269_01229

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Rothia mucilaginosa
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Micrococcaceae; Rothia; Rothia mucilaginosa
CAZyme ID MGYG000001269_01229
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
375 41736.1 6.639
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001269 2178797 MAG Italy Europe
Gene Location Start: 1151;  End: 2278  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001269_01229.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 200 338 1.7e-19 0.88125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03809 GT4_MtfB-like 1.43e-52 2 370 1 362
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03801 GT4_PimA-like 1.60e-31 14 373 12 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.56e-30 101 375 108 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00534 Glycos_transf_1 7.45e-24 206 349 5 152
Glycosyl transferases group 1. Mutations in this domain of PIGA lead to disease (Paroxysmal Nocturnal haemoglobinuria). Members of this family transfer activated sugars to a variety of substrates, including glycogen, Fructose-6-phosphate and lipopolysaccharides. Members of this family transfer UDP, ADP, GDP or CMP linked sugars. The eukaryotic glycogen synthases may be distant members of this family.
cd03817 GT4_UGDG-like 2.90e-18 83 302 82 304
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BAS20976.1 6.81e-273 1 375 1 375
ATF62408.1 1.60e-271 1 375 1 375
QXW98591.1 5.36e-270 1 375 1 375
BAI64951.1 1.08e-269 1 375 1 375
QKI09224.1 1.95e-209 1 375 1 380

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3C4Q_A 5.89e-06 145 368 161 398
Structureof the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4Q_B Structure of the retaining glycosyltransferase MshA : The first step in mycothiol biosynthesis. Organism : Corynebacterium glutamicum- Complex with UDP [Corynebacterium glutamicum],3C4V_A Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum],3C4V_B Structure of the retaining glycosyltransferase MshA:The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum : Complex with UDP and 1L-INS-1-P. [Corynebacterium glutamicum]
3C48_A 6.00e-06 145 368 181 418
Structureof the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum],3C48_B Structure of the retaining glycosyltransferase MshA: The first step in mycothiol biosynthesis. Organism: Corynebacterium glutamicum- APO (OPEN) structure. [Corynebacterium glutamicum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P26402 2.84e-08 152 340 143 320
Protein RfbU OS=Salmonella typhimurium (strain LT2 / SGSC1412 / ATCC 700720) OX=99287 GN=rfbU PE=3 SV=1
B2SUK8 5.54e-08 152 363 149 357
GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase OS=Xanthomonas oryzae pv. oryzae (strain PXO99A) OX=360094 GN=gumH PE=3 SV=1
Q4JAK2 3.78e-07 205 375 181 351
Archaeal glycosylation protein 16 OS=Sulfolobus acidocaldarius (strain ATCC 33909 / DSM 639 / JCM 8929 / NBRC 15157 / NCIMB 11770) OX=330779 GN=agl16 PE=3 SV=1
Q56774 5.48e-07 173 363 159 357
GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase OS=Xanthomonas campestris OX=339 GN=gumH PE=1 SV=1
Q8FSH1 1.42e-06 145 368 161 398
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium efficiens (strain DSM 44549 / YS-314 / AJ 12310 / JCM 11189 / NBRC 100395) OX=196164 GN=mshA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000066 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001269_01229.