logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001371_03498

You are here: Home > Sequence: MGYG000001371_03498

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus lautus_A
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus; Paenibacillus lautus_A
CAZyme ID MGYG000001371_03498
CAZy Family GH13
CAZyme Description Cyclomaltodextrin glucanotransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
713 MGYG000001371_98|CGC2 77413.53 7.0127
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001371 6950059 Isolate not provided not provided
Gene Location Start: 43149;  End: 45290  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.19 3.2.1.116 3.2.1.133

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 78 393 4.4e-130 0.9967741935483871
CBM20 614 705 3.9e-28 0.9777777777777777

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11320 AmyAc_AmyMalt_CGTase_like 0.0 38 427 1 389
Alpha amylase catalytic domain found in maltogenic amylases, cyclodextrin glycosyltransferase, and related proteins. Enzymes such as amylases, cyclomaltodextrinase (CDase), and cyclodextrin glycosyltransferase (CGTase) degrade starch to smaller oligosaccharides by hydrolyzing the alpha-D-(1,4) linkages between glucose residues. In the case of CGTases, an additional cyclization reaction is catalyzed yielding mixtures of cyclic oligosaccharides which are referred to as alpha-, beta-, or gamma-cyclodextrins (CDs), consisting of six, seven, or eight glucose residues, respectively. CGTases are characterized depending on the major product of the cyclization reaction. Besides having similar catalytic site residues, amylases and CGTases contain carbohydrate binding domains that are distant from the active site and are implicated in attaching the enzyme to raw starch granules and in guiding the amylose chain into the active site. The maltogenic alpha-amylase from Bacillus is a five-domain structure, unlike most alpha-amylases, but similar to that of cyclodextrin glycosyltransferase. In addition to the A, B, and C domains, they have a domain D and a starch-binding domain E. Maltogenic amylase is an endo-acting amylase that has activity on cyclodextrins, terminally modified linear maltodextrins, and amylose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
pfam00128 Alpha-amylase 8.51e-110 79 399 1 334
Alpha amylase, catalytic domain. Alpha amylase is classified as family 13 of the glycosyl hydrolases. The structure is an 8 stranded alpha/beta barrel containing the active site, interrupted by a ~70 a.a. calcium-binding domain protruding between beta strand 3 and alpha helix 3, and a carboxyl-terminal Greek key beta-barrel domain.
cd11339 AmyAc_bac_CMD_like_2 4.49e-88 42 428 3 344
Alpha amylase catalytic domain found in bacterial cyclomaltodextrinases and related proteins. Cyclomaltodextrinase (CDase; EC3.2.1.54), neopullulanase (NPase; EC 3.2.1.135), and maltogenic amylase (MA; EC 3.2.1.133) catalyze the hydrolysis of alpha-(1,4) glycosidic linkages on a number of substrates including cyclomaltodextrins (CDs), pullulan, and starch. These enzymes hydrolyze CDs and starch to maltose and pullulan to panose by cleavage of alpha-1,4 glycosidic bonds whereas alpha-amylases essentially lack activity on CDs and pullulan. They also catalyze transglycosylation of oligosaccharides to the C3-, C4- or C6-hydroxyl groups of various acceptor sugar molecules. Since these proteins are nearly indistinguishable from each other, they are referred to as cyclomaltodextrinases (CMDs). This group of CMDs is bacterial. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11319 AmyAc_euk_AmyA 1.15e-77 43 427 10 371
Alpha amylase catalytic domain found in eukaryotic Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes eukaryotic alpha-amylases including proteins from fungi, sponges, and protozoans. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
COG0366 AmyA 7.34e-60 43 459 2 422
Glycosidase [Carbohydrate transport and metabolism].

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AYB46321.1 0.0 1 713 1 713
QOT08538.1 0.0 1 713 1 713
ACX63251.1 0.0 1 713 1 713
AAA22310.1 0.0 1 713 1 713
AWP29522.1 0.0 1 713 1 713

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1OT2_A 0.0 28 713 1 686
ChainA, Cyclomaltodextrin glucanotransferase [Niallia circulans]
1TCM_A 0.0 28 713 1 686
ChainA, CYCLODEXTRIN GLYCOSYLTRANSFERASE [Niallia circulans],1TCM_B Chain B, CYCLODEXTRIN GLYCOSYLTRANSFERASE [Niallia circulans]
1PJ9_A 0.0 28 713 1 686
ChainA, Cyclomaltodextrin glucanotransferase [Niallia circulans]
1PEZ_A 0.0 28 713 1 686
ChainA, Cyclomaltodextrin glucanotransferase [Niallia circulans]
1UKS_A 0.0 28 713 1 686
ChainA, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011],1UKS_B Chain B, Cyclomaltodextrin glucanotransferase [Bacillus sp. 1011]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P30921 0.0 1 713 1 713
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain 17-1) OX=72572 GN=cgt PE=1 SV=1
P17692 0.0 1 713 1 713
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain B1018) OX=1417 GN=cgt PE=1 SV=1
P31747 0.0 2 712 7 718
Cyclomaltodextrin glucanotransferase OS=Bacillus sp. (strain 6.6.3) OX=29335 GN=cgt PE=3 SV=1
P14014 0.0 5 712 2 718
Cyclomaltodextrin glucanotransferase OS=Bacillus licheniformis OX=1402 GN=cgtA PE=3 SV=1
P26827 0.0 1 712 1 709
Cyclomaltodextrin glucanotransferase OS=Thermoanaerobacterium thermosulfurigenes OX=33950 GN=amyA PE=1 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000242 0.999094 0.000170 0.000177 0.000154 0.000148

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001371_03498.