logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001378_00173

You are here: Home > Sequence: MGYG000001378_00173

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides ovatus
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides ovatus
CAZyme ID MGYG000001378_00173
CAZy Family GH43
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
613 MGYG000001378_1|CGC6 68775.34 4.6647
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001378 6545242 Isolate not provided not provided
Gene Location Start: 248776;  End: 250617  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001378_00173.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 303 595 2.1e-97 0.9966555183946488

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18616 GH43_ABN-like 3.65e-121 305 589 1 291
Glycosyl hydrolase family 43 such as arabinan endo-1 5-alpha-L-arabinosidase. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activity. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd08998 GH43_Arb43a-like 1.19e-69 315 590 3 278
Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam04616 Glyco_hydro_43 1.28e-67 303 595 1 281
Glycosyl hydrolases family 43. The glycosyl hydrolase family 43 contains members that are arabinanases. Arabinanases hydrolyze the alpha-1,5-linked L-arabinofuranoside backbone of plant cell wall arabinans. The structure of arabinanase Arb43A from Cellvibrio japonicus reveals a five-bladed beta-propeller fold. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd08988 GH43_ABN 1.59e-58 314 589 1 277
Glycosyl hydrolase family 43. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd08999 GH43_ABN-like 3.79e-56 305 596 1 284
Glycosyl hydrolase family 43 protein such as endo-alpha-L-arabinanase. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QGT74220.1 0.0 1 613 1 613
QDH53387.1 0.0 1 613 16 633
ANU59135.1 0.0 1 613 16 631
QQR15944.1 0.0 1 613 16 631
ALJ47611.1 0.0 1 613 16 633

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1UV4_A 4.44e-30 315 595 14 291
NativeBacillus subtilis Arabinanase Arb43A [Bacillus subtilis]
1GYD_B 5.18e-30 315 597 6 301
Structureof Cellvibrio cellulosa alpha-L-arabinanase [Cellvibrio japonicus]
1GYH_A 5.50e-30 315 597 9 304
Structureof D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus],1GYH_B Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus],1GYH_C Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus],1GYH_D Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus],1GYH_E Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus],1GYH_F Structure of D158A Cellvibrio cellulosa alpha-L-arabinanase mutant [Cellvibrio japonicus]
6B7K_A 1.82e-29 315 595 23 299
GH43Endo-Arabinanase from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580],6B7K_B GH43 Endo-Arabinanase from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580],6B7K_C GH43 Endo-Arabinanase from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580],6B7K_D GH43 Endo-Arabinanase from Bacillus licheniformis [Bacillus licheniformis DSM 13 = ATCC 14580]
4QQS_A 2.43e-29 302 598 4 302
Crystalstructure of a thermostable family-43 glycoside hydrolase [Halothermothrix orenii H 168],4QQS_B Crystal structure of a thermostable family-43 glycoside hydrolase [Halothermothrix orenii H 168]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P94522 4.54e-29 315 595 44 321
Extracellular endo-alpha-(1->5)-L-arabinanase 1 OS=Bacillus subtilis (strain 168) OX=224308 GN=abnA PE=1 SV=3
P95470 7.17e-29 315 597 38 333
Extracellular exo-alpha-(1->5)-L-arabinofuranosidase ArbA OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=arbA PE=1 SV=1
B3EYM8 7.26e-27 313 598 25 314
Intracellular endo-alpha-(1->5)-L-arabinanase OS=Geobacillus stearothermophilus OX=1422 GN=abnB PE=1 SV=1
Q93HT9 4.39e-26 313 597 25 313
Intracellular endo-alpha-(1->5)-L-arabinanase OS=Geobacillus thermodenitrificans OX=33940 GN=abn-ts PE=1 SV=1
A1CLG4 1.68e-20 285 597 2 321
Probable arabinan endo-1,5-alpha-L-arabinosidase A OS=Aspergillus clavatus (strain ATCC 1007 / CBS 513.65 / DSM 816 / NCTC 3887 / NRRL 1 / QM 1276 / 107) OX=344612 GN=abnA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as LIPO

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000133 0.014995 0.984877 0.000007 0.000012 0.000008

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001378_00173.