logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001433_02493

You are here: Home > Sequence: MGYG000001433_02493

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides salyersiae
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides salyersiae
CAZyme ID MGYG000001433_02493
CAZy Family GH13
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
937 MGYG000001433_2|CGC3 105474.41 4.8909
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001433 5309986 Isolate not provided not provided
Gene Location Start: 202557;  End: 205370  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001433_02493.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 389 591 6.8e-44 0.5782747603833865

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11350 AmyAc_4 0.0 364 770 1 390
Alpha amylase catalytic domain found in an uncharacterized protein family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11325 AmyAc_GTHase 2.30e-53 364 601 23 241
Alpha amylase catalytic domain found in Glycosyltrehalose trehalohydrolase (also called Maltooligosyl trehalose Trehalohydrolase). Glycosyltrehalose trehalohydrolase (GTHase) was discovered as part of a coupled system for the production of trehalose from soluble starch. In the first half of the reaction, glycosyltrehalose synthase (GTSase), an intramolecular glycosyl transferase, converts the glycosidic bond between the last two glucose residues of amylose from an alpha-1,4 bond to an alpha-1,1 bond, making a non-reducing glycosyl trehaloside. In the second half of the reaction, GTHase cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and malto-oligosaccharide. Like isoamylase and other glycosidases that recognize branched oligosaccharides, GTHase contains an N-terminal extension and does not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase. Glycosyltrehalose Trehalohydrolase Maltooligosyltrehalose Trehalohydrolase
COG0296 GlgB 4.41e-53 262 847 44 605
1,4-alpha-glucan branching enzyme [Carbohydrate transport and metabolism].
cd11313 AmyAc_arch_bac_AmyA 3.60e-35 380 766 6 333
Alpha amylase catalytic domain found in archaeal and bacterial Alpha-amylases (also called 1,4-alpha-D-glucan-4-glucanohydrolase). AmyA (EC 3.2.1.1) catalyzes the hydrolysis of alpha-(1,4) glycosidic linkages of glycogen, starch, related polysaccharides, and some oligosaccharides. This group includes firmicutes, bacteroidetes, and proteobacteria. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd00551 AmyAc_family 2.67e-33 381 708 2 257
Alpha amylase catalytic domain family. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; and C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost this catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QUT75353.1 0.0 1 937 1 937
QDO71214.1 0.0 1 937 1 944
QUT90345.1 0.0 1 937 1 942
ALJ58548.1 0.0 1 937 1 942
QIK54808.1 1.27e-311 19 937 18 908

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
1EHA_A 3.80e-30 283 579 33 285
CRYSTALSTRUCTURE OF GLYCOSYLTREHALOSE TREHALOHYDROLASE FROM SULFOLOBUS SOLFATARICUS [Saccharolobus solfataricus]
1EH9_A 3.80e-30 283 579 33 285
CrystalStructure Of Sulfolobus Solfataricus Glycosyltrehalose Trehalohydrolase [Saccharolobus solfataricus],3VGB_A Crystal structure of glycosyltrehalose trehalohydrolase (GTHase) from Sulfolobus solfataricus KM1 [Saccharolobus solfataricus]
3VGG_A 3.80e-30 283 579 33 285
Crystalstructure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltoheptaose [Saccharolobus solfataricus],3VGH_A Crystal structure of glycosyltrehalose trehalohydrolase (E283Q) complexed with maltotriosyltrehalose [Saccharolobus solfataricus]
3VGD_A 1.21e-29 283 579 33 285
Ctystalstructure of glycosyltrehalose trehalohydrolase (D252E) [Saccharolobus solfataricus]
3VGE_A 2.15e-29 283 579 33 285
Crystalstructure of glycosyltrehalose trehalohydrolase (D252S) [Saccharolobus solfataricus],3VGF_A Crystal structure of glycosyltrehalose trehalohydrolase (D252S) complexed with maltotriosyltrehalose [Saccharolobus solfataricus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q632H1 1.28e-33 262 829 37 568
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus cereus (strain ZK / E33L) OX=288681 GN=glgB PE=3 SV=1
Q81K82 7.65e-33 262 829 45 576
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus anthracis OX=1392 GN=glgB PE=3 SV=1
C3PCL8 7.65e-33 262 829 45 576
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus anthracis (strain A0248) OX=592021 GN=glgB PE=3 SV=1
C3LC26 7.65e-33 262 829 45 576
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus anthracis (strain CDC 684 / NRRL 3495) OX=568206 GN=glgB PE=3 SV=1
Q72YJ3 1.02e-32 262 829 45 576
1,4-alpha-glucan branching enzyme GlgB OS=Bacillus cereus (strain ATCC 10987 / NRS 248) OX=222523 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000332 0.998961 0.000235 0.000159 0.000167 0.000155

TMHMM  Annotations      download full data without filtering help

start end
5 24