logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001437_01760

You are here: Home > Sequence: MGYG000001437_01760

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Staphylococcus schleiferi
Lineage Bacteria; Firmicutes; Bacilli; Staphylococcales; Staphylococcaceae; Staphylococcus; Staphylococcus schleiferi
CAZyme ID MGYG000001437_01760
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
284 MGYG000001437_2|CGC6 33153.08 6.6481
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001437 2461191 Isolate not provided not provided
Gene Location Start: 446175;  End: 447029  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.-

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
TIGR02918 TIGR02918 6.26e-142 1 247 1 247
accessory Sec system glycosylation protein GtfA. Members of this protein family are found only in Gram-positive bacteria of the Firmicutes lineage, including several species of Staphylococcus, Streptococcus, and Lactobacillus. Members are associated with glycosylation of serine-rich glycoproteins exported by the accessory Sec system. [Protein fate, Protein modification and repair]
cd04949 GT4_GtfA-like 3.97e-11 195 246 39 90
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.
cd04949 GT4_GtfA-like 1.61e-10 3 40 1 38
accessory Sec system glycosyltransferase GtfA and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases and is named after gtfA in Streptococcus gordonii, where it plays a role in the O-linked glycosylation of GspB, a cell surface glycoprotein involved in platelet binding. In general glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found in bacteria.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QGS46370.1 2.66e-174 1 247 1 247
CAD7358689.1 2.66e-174 1 247 1 247
QPA24508.1 7.59e-174 1 247 1 247
QPA34738.1 7.59e-174 1 247 1 247
AKS70524.1 2.04e-171 1 247 1 247

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5E9T_A 1.02e-89 2 247 2 248
Crystalstructure of GtfA/B complex [Streptococcus gordonii],5E9T_C Crystal structure of GtfA/B complex [Streptococcus gordonii],5E9U_A Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_C Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_E Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii],5E9U_G Crystal structure of GtfA/B complex bound to UDP and GlcNAc [Streptococcus gordonii]
4PQG_A 4.22e-81 1 247 9 256
Crystalstructure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4],4PQG_B Crystal structure of the pneumococcal O-GlcNAc transferase GtfA in complex with UDP and GlcNAc [Streptococcus pneumoniae TIGR4]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9AET5 7.65e-90 1 247 1 248
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus gordonii OX=1302 GN=gtfA PE=1 SV=2
Q3S2Y2 1.02e-80 1 246 1 246
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus agalactiae OX=1311 GN=gtfA PE=1 SV=1
A0A0H2URG7 1.89e-80 1 247 1 248
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=gtfA PE=1 SV=1
A1C3L9 8.97e-75 1 247 1 249
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Streptococcus parasanguinis OX=1318 GN=gtfA PE=1 SV=1
A0A0S4NM89 9.46e-55 1 247 1 257
UDP-N-acetylglucosamine--peptide N-acetylglucosaminyltransferase GtfA subunit OS=Limosilactobacillus reuteri (strain ATCC 53608) OX=927703 GN=gtfA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000053 0.000002 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001437_01760.