logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001461_03500

You are here: Home > Sequence: MGYG000001461_03500

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bacteroides neonati
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Bacteroidaceae; Bacteroides; Bacteroides neonati
CAZyme ID MGYG000001461_03500
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
289 MGYG000001461_7|CGC3 33975.98 6.6638
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001461 5024706 Isolate not provided not provided
Gene Location Start: 116863;  End: 117732  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001461_03500.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 8 111 4.6e-20 0.6529411764705882

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 9.42e-74 7 257 2 229
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
pfam00535 Glycos_transf_2 4.72e-16 8 111 1 111
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 1.40e-12 9 111 1 110
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
COG0463 WcaA 2.84e-12 4 273 2 278
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd06423 CESA_like 1.69e-11 9 108 1 108
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ADY55900.1 1.12e-126 5 289 2 286
ADO36952.1 5.93e-110 5 289 2 286
QWT52215.1 1.41e-98 6 289 3 288
ALJ41673.1 2.49e-98 5 274 2 274
AXY25295.1 9.73e-98 6 274 3 272

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P44029 4.93e-19 7 259 4 234
Uncharacterized glycosyltransferase HI_0653 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_0653 PE=3 SV=1
Q54435 3.62e-18 4 253 4 229
Lipopolysaccharide core biosynthesis glycosyltransferase KdtX OS=Serratia marcescens OX=615 GN=kdtX PE=3 SV=1
Q9XC90 3.06e-15 7 255 5 229
Lipopolysaccharide core biosynthesis glycosyltransferase WaaE OS=Klebsiella pneumoniae OX=573 GN=waaE PE=3 SV=1
Q68XF1 5.02e-13 11 274 8 256
Uncharacterized glycosyltransferase RT0209 OS=Rickettsia typhi (strain ATCC VR-144 / Wilmington) OX=257363 GN=RT0209 PE=3 SV=1
Q4UMM0 8.54e-13 11 274 8 256
Uncharacterized glycosyltransferase RF_0337 OS=Rickettsia felis (strain ATCC VR-1525 / URRWXCal2) OX=315456 GN=RF_0337 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000063 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001461_03500.