logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001471_01484

You are here: Home > Sequence: MGYG000001471_01484

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bifidobacterium gallicum
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Bifidobacteriaceae; Bifidobacterium; Bifidobacterium gallicum
CAZyme ID MGYG000001471_01484
CAZy Family CBM48
CAZyme Description 1,4-alpha-glucan branching enzyme GlgB
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
764 MGYG000001471_10|CGC2 86210.84 4.7294
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001471 2004594 Isolate not provided not provided
Gene Location Start: 19073;  End: 21367  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.18

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 314 614 2.9e-156 0.9966777408637874
CBM48 179 251 3.2e-16 0.7894736842105263

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11322 AmyAc_Glg_BE 0.0 254 648 1 400
Alpha amylase catalytic domain found in the Glycogen branching enzyme (also called 1,4-alpha-glucan branching enzyme). The glycogen branching enzyme catalyzes the third step of glycogen biosynthesis by the cleavage of an alpha-(1,4)-glucosidic linkage and the formation a new alpha-(1,6)-branch by subsequent transfer of cleaved oligosaccharide. They are part of a group called branching enzymes which catalyze the formation of alpha-1,6 branch points in either glycogen or starch. This group includes proteins from bacteria, eukaryotes, and archaea. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
PRK14706 PRK14706 0.0 148 762 9 621
glycogen branching enzyme; Provisional
PRK14705 PRK14705 0.0 14 762 488 1222
glycogen branching enzyme; Provisional
TIGR01515 branching_enzym 0.0 139 761 1 618
alpha-1,4-glucan:alpha-1,4-glucan 6-glycosyltransferase. This model describes the glycogen branching enzymes which are responsible for the transfer of chains of approx. 7 alpha(1--4)-linked glucosyl residues to other similar chains (in new alpha(1--6) linkages) in the biosynthesis of glycogen. This enzyme is a member of the broader amylase family of starch hydrolases which fold as (beta/alpha)8 barrels, the so-called TIM-barrel structure. All of the sequences comprising the seed of this model have been experimentally characterized. This model encompasses both bacterial and eukaryotic species. No archaea have this enzyme, although Aquifex aolicus does. Two species, Bacillus thuringiensis and Clostridium perfringens have two sequences each which are annotated as amylases. These annotations are aparrently in error. GP|18143720 from C. perfringens, for instance, contains the note "674 aa, similar to gp:A14658_1 amylase (1,4-alpha-glucan branching enzyme (EC 2.4.1.18) ) from Bacillus thuringiensis (648 aa); 51.1% identity in 632 aa overlap." A branching enzyme from Porphyromonas gingivales, OMNI|PG1793, appears to be more closely related to the eukaryotic species (across a deep phylogenetic split) and may represent an instance of lateral transfer from this species' host. A sequence from Arabidopsis thaliana, GP|9294564, scores just above trusted, but appears either to contain corrupt sequence or, more likely, to be a pseudogene as some of the conserved catalytic residues common to the alpha amylase family are not conserved here. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
PRK12313 PRK12313 0.0 130 763 2 628
1,4-alpha-glucan branching protein GlgB.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ATU21281.1 0.0 26 764 12 749
AYN23823.1 0.0 3 764 23 782
AFI63190.1 0.0 26 764 12 749
ANU44167.1 0.0 26 764 12 749
QQQ90042.1 0.0 26 764 12 749

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3K1D_A 1.28e-273 39 762 16 721
Crystalstructure of glycogen branching enzyme synonym: 1,4-alpha-D-glucan:1,4-alpha-D-GLUCAN 6-glucosyl-transferase from mycobacterium tuberculosis H37RV [Mycobacterium tuberculosis H37Rv]
5GQW_A 1.40e-228 28 761 25 772
Crystalstructure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142],5GQX_A Crystal structure of branching enzyme W610N mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142]
5GQZ_A 2.81e-228 28 761 25 772
Crystalstructure of branching enzyme Y500A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GR5_A 3.98e-228 28 761 25 772
Crystalstructure of branching enzyme W610A mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]
5GR1_A 3.98e-228 28 761 25 772
Crystalstructure of branching enzyme Y500A/D501A mutant from Cyanothece sp. ATCC 51142 in complex with maltoheptaose [Crocosphaera subtropica ATCC 51142],5GR6_A Crystal structure of branching enzyme Y500A/D501A double mutant from Cyanothece sp. ATCC 51142 [Crocosphaera subtropica ATCC 51142]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q8G5L0 0.0 26 764 1 737
1,4-alpha-glucan branching enzyme GlgB OS=Bifidobacterium longum (strain NCC 2705) OX=206672 GN=glgB PE=3 SV=1
Q47SE7 1.89e-309 32 760 33 744
1,4-alpha-glucan branching enzyme GlgB OS=Thermobifida fusca (strain YX) OX=269800 GN=glgB PE=3 SV=1
Q6AEU4 1.26e-298 33 761 19 730
1,4-alpha-glucan branching enzyme GlgB OS=Leifsonia xyli subsp. xyli (strain CTCB07) OX=281090 GN=glgB PE=3 SV=1
Q0SGR9 2.83e-292 29 763 12 731
1,4-alpha-glucan branching enzyme GlgB OS=Rhodococcus jostii (strain RHA1) OX=101510 GN=glgB PE=3 SV=1
Q2J6Q9 6.21e-289 31 762 94 811
1,4-alpha-glucan branching enzyme GlgB OS=Frankia casuarinae (strain DSM 45818 / CECT 9043 / CcI3) OX=106370 GN=glgB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.998761 0.001199 0.000039 0.000005 0.000003 0.000014

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001471_01484.