logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001490_01672

You are here: Home > Sequence: MGYG000001490_01672

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Bifidobacterium catenulatum
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Bifidobacteriaceae; Bifidobacterium; Bifidobacterium catenulatum
CAZyme ID MGYG000001490_01672
CAZy Family GH32
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
463 MGYG000001490_1|CGC25 53199.29 4.5321
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001490 2079525 Isolate not provided not provided
Gene Location Start: 1943836;  End: 1945227  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001490_01672.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH32 10 286 3e-47 0.9215017064846417

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08995 GH32_EcAec43-like 4.55e-137 13 296 1 281
Glycosyl hydrolase family 32, such as the putative glycoside hydrolase Escherichia coli Aec43 (FosGH2). This glycosyl hydrolase family 32 (GH32) subgroup includes Escherichia coli strain BEN2908 putative glycoside hydrolase Aec43 (FosGH2). GH32 enzymes cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). GH32 family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize.
cd08996 GH32_FFase 5.02e-38 26 283 18 273
Glycosyl hydrolase family 32, beta-fructosidases. Glycosyl hydrolase family GH32 cleaves sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
smart00640 Glyco_32 2.20e-36 26 369 24 383
Glycosyl hydrolases family 32.
COG1621 SacC 4.88e-35 22 453 52 479
Sucrose-6-phosphate hydrolase SacC, GH32 family [Carbohydrate transport and metabolism].
pfam00251 Glyco_hydro_32N 2.59e-29 23 266 21 271
Glycosyl hydrolases family 32 N-terminal domain. This domain corresponds to the N-terminal domain of glycosyl hydrolase family 32 which forms a five bladed beta propeller structure.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
BAR02582.1 0.0 1 463 1 463
QTL79672.1 0.0 1 463 1 463
QFZ79493.1 3.93e-308 2 463 3 465
AUE06367.1 3.93e-308 2 463 3 465
AUE02066.1 3.93e-308 2 463 3 465

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6R3R_A 6.45e-49 2 457 29 500
Firstcrystal structure of endo-levanase BT1760 from Bacteroides thetaiotaomicron [Bacteroides thetaiotaomicron]
6R3U_A 4.61e-48 2 457 29 500
Endo-levanaseBT1760 mutant E221A from Bacteroides thetaiotaomicron complexed with levantetraose [Bacteroides thetaiotaomicron]
3PIG_A 6.73e-09 2 367 42 419
beta-fructofuranosidasefrom Bifidobacterium longum [Bifidobacterium longum],3PIG_B beta-fructofuranosidase from Bifidobacterium longum [Bifidobacterium longum],3PIJ_A beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum],3PIJ_B beta-fructofuranosidase from Bifidobacterium longum - complex with fructose [Bifidobacterium longum]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
O07003 3.40e-13 19 456 67 508
Levanbiose-producing levanase OS=Bacillus subtilis (strain 168) OX=224308 GN=levB PE=1 SV=1
P13394 1.68e-11 44 296 80 337
Sucrose-6-phosphate hydrolase OS=Vibrio alginolyticus OX=663 GN=scrB PE=2 SV=1
Q05936 2.11e-09 37 367 67 401
Sucrose-6-phosphate hydrolase OS=Staphylococcus xylosus OX=1288 GN=scrB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000073 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001490_01672.