logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001493_04183

You are here: Home > Sequence: MGYG000001493_04183

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Enterocloster bolteae
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Enterocloster; Enterocloster bolteae
CAZyme ID MGYG000001493_04183
CAZy Family GH137
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
325 MGYG000001493_5|CGC3 38083.91 5.6298
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001493 6583702 Isolate not provided not provided
Gene Location Start: 263755;  End: 264732  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001493_04183.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH137 53 271 1.9e-16 0.6676470588235294

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18609 GH32-like 4.38e-14 188 315 42 182
Glycosyl hydrolase family 32 family protein. The GH32 family contains glycosyl hydrolase family GH32 proteins that cleave sucrose into fructose and glucose via beta-fructofuranosidase activity, producing invert sugar that is a mixture of dextrorotatory D-glucose and levorotatory D-fructose, thus named invertase (EC 3.2.1.26). This family also contains other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). These retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. These enzymes are predicted to display a 5-fold beta-propeller fold as found for GH43 and CH68. The breakdown of sucrose is widely used as a carbon or energy source by bacteria, fungi, and plants. Invertase is used commercially in the confectionery industry, since fructose has a sweeter taste than sucrose and a lower tendency to crystallize. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd18610 GH130_BT3780-like 4.44e-10 73 263 2 175
Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism.
cd18610 GH130_BT3780-like 3.74e-09 190 266 46 119
Glycosyl hydrolase family 130, such as beta-mammosidase BT3780 and BACOVA_03624. This subfamily contains glycosyl hydrolase family 130, as classified by the carbohydrate-active enzymes database (CAZY), and includes Bacteroides enzymes, BT3780 and BACOVA_03624. Members of this family possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. GH130 enzymes have also been shown to target beta-1,2- and beta-1,4-mannosidic linkages where these phosphorylases mediate bond cleavage by a single displacement reaction in which phosphate functions as the catalytic nucleophile. However, some lack the conserved basic residues that bind the phosphate nucleophile, as observed for the Bacteroides enzymes, BT3780 and BACOVA_03624, which are indeed beta-mannosidases that hydrolyze beta-1,2-mannosidic linkages through an inverting mechanism.
cd18614 GH130 1.17e-08 190 280 33 122
Glycosyl hydrolase family 130; uncharacterized. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), most of which are as yet uncharacterized. GH130 enzymes are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), beta-1,4-mannosyl-N-acetyl-glucosamine phosphorylase (EC 2.4.1.320), beta-1,2-mannobiose phosphorylase (EC 2.4.1.-), beta-1,2-oligomannan phosphorylase (EC 2.4.1.-) and beta-1,2-mannosidase (EC 3.2.1.-). They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor.
cd08993 GH130 1.72e-07 190 267 33 108
Glycosyl hydrolase family 130. This subfamily contains glycosyl hydrolase family 130 (GH130) proteins, as classified by the carbohydrate-active enzymes database (CAZY), are phosphorylases and hydrolases for beta-mannosides, and include beta-1,4-mannosylglucose phosphorylase (EC 2.4.1.281), beta-1,4-mannooligosaccharide phosphorylase (EC 2.4.1.319), among others that have yet to be characterized. They possess 5-bladed beta-propeller domains similar to families 32, 43, 62, 68, 117 (GH32, GH43, GH62, GH68, GH117). GH130 enzymes are involved in the bacterial utilization of mannans or N-linked glycans. Beta-1,4-mannosylglucose phosphorylase is involved in degradation of beta-1,4-D-mannosyl-N-acetyl-D-glucosamine linkages in the core of N-glycans; it produces alpha-mannose 1-phosphate and glucose from 4-O-beta-D-mannosyl-D-glucose and inorganic phosphate, using a critical catalytic Asp as a proton donor. This family includes Ruminococcus albus 4-O-beta-D-mannosyl-D-glucose phosphorylase (RaMP1) and beta-(1,4)-mannooligosaccharide phosphorylase (RaMP2), enzymes that phosphorolyze beta-mannosidic linkages at the non-reducing ends of their substrates, and have substantially diverse substrate specificity that are determined by three loop regions.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QRP41740.1 1.75e-270 1 325 1 325
QJU22064.1 1.19e-268 1 325 1 325
QVL30751.1 2.59e-99 12 321 28 315
CUA19758.1 2.33e-93 15 321 40 325
QRP88911.1 2.33e-93 15 321 40 325

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7FIP_A 1.92e-06 72 316 23 305
ChainA, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIP_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIQ_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIR_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_A Chain A, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_B Chain B, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_C Chain C, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514],7FIS_D Chain D, Beta-1,2-mannobiose phosphorylase [Thermoanaerobacter sp. X514]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
B0K2C2 1.35e-10 72 316 12 227
1,2-beta-oligomannan phosphorylase OS=Thermoanaerobacter sp. (strain X514) OX=399726 GN=Teth514_1788 PE=1 SV=1
P9WLW6 8.83e-09 129 316 115 296
Uncharacterized protein MT1551 OS=Mycobacterium tuberculosis (strain CDC 1551 / Oshkosh) OX=83331 GN=MT1551 PE=4 SV=1
P9WLW7 8.83e-09 129 316 115 296
Uncharacterized protein Rv1502 OS=Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv) OX=83332 GN=Rv1502 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000039 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001493_04183.