logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001509_00890

You are here: Home > Sequence: MGYG000001509_00890

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Flaviflexus massiliensis
Lineage Bacteria; Actinobacteriota; Actinomycetia; Actinomycetales; Actinomycetaceae; Flaviflexus; Flaviflexus massiliensis
CAZyme ID MGYG000001509_00890
CAZy Family GH13
CAZyme Description Oligo-1,6-glucosidase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
542 61228.21 4.4219
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001509 2631133 Isolate not provided not provided
Gene Location Start: 77894;  End: 79522  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.20

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 33 392 2e-170 0.9972602739726028

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11332 AmyAc_OligoGlu_TS 0.0 10 482 1 478
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), trehalose synthase (also called maltose alpha-D-glucosyltransferase), and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Trehalose synthase (EC 5.4.99.16) catalyzes the isomerization of maltose to produce trehalulose. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11333 AmyAc_SI_OligoGlu_DGase 4.42e-160 14 476 2 428
Alpha amylase catalytic domain found in Sucrose isomerases, oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase), dextran glucosidase (also called glucan 1,6-alpha-glucosidase), and related proteins. The sucrose isomerases (SIs) Isomaltulose synthase (EC 5.4.99.11) and Trehalose synthase (EC 5.4.99.16) catalyze the isomerization of sucrose and maltose to produce isomaltulose and trehalulose, respectively. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomaltooligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. Dextran glucosidase (DGase, EC 3.2.1.70) hydrolyzes alpha-1,6-glucosidic linkages at the non-reducing end of panose, isomaltooligosaccharides and dextran to produce alpha-glucose.The common reaction chemistry of the alpha-amylase family enzymes is based on a two-step acid catalytic mechanism that requires two critical carboxylates: one acting as a general acid/base (Glu) and the other as a nucleophile (Asp). Both hydrolysis and transglycosylation proceed via the nucleophilic substitution reaction between the anomeric carbon, C1 and a nucleophile. Both enzymes contain the three catalytic residues (Asp, Glu and Asp) common to the alpha-amylase family as well as two histidine residues which are predicted to be critical to binding the glucose residue adjacent to the scissile bond in the substrates. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11331 AmyAc_OligoGlu_like 4.89e-152 10 477 1 443
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11330 AmyAc_OligoGlu 1.64e-151 11 477 2 454
Alpha amylase catalytic domain found in oligo-1,6-glucosidase (also called isomaltase; sucrase-isomaltase; alpha-limit dextrinase) and related proteins. Oligo-1,6-glucosidase (EC 3.2.1.10) hydrolyzes the alpha-1,6-glucosidic linkage of isomalto-oligosaccharides, pannose, and dextran. Unlike alpha-1,4-glucosidases (EC 3.2.1.20), it fails to hydrolyze the alpha-1,4-glucosidic bonds of maltosaccharides. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11328 AmyAc_maltase 1.09e-134 11 477 4 462
Alpha amylase catalytic domain found in maltase (also known as alpha glucosidase) and related proteins. Maltase (EC 3.2.1.20) hydrolyzes the terminal, non-reducing (1->4)-linked alpha-D-glucose residues in maltose, releasing alpha-D-glucose. In most cases, maltase is equivalent to alpha-glucosidase, but the term "maltase" emphasizes the disaccharide nature of the substrate from which glucose is cleaved, and the term "alpha-glucosidase" emphasizes the bond, whether the substrate is a disaccharide or polysaccharide. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AZQ77094.1 4.36e-315 8 537 2 530
AZN29890.1 6.48e-301 9 537 2 529
SBT46526.1 9.22e-238 11 536 15 545
ADG75068.1 1.71e-235 2 538 10 565
SCG58989.1 3.20e-233 11 538 14 546

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3WY4_A 6.66e-95 11 477 7 459
Crystalstructure of alpha-glucosidase mutant E271Q in complex with maltose [Halomonas sp. H11],3WY4_B Crystal structure of alpha-glucosidase mutant E271Q in complex with maltose [Halomonas sp. H11]
3WY1_A 9.38e-95 11 477 7 459
Crystalstructure of alpha-glucosidase [Halomonas sp. H11],3WY1_B Crystal structure of alpha-glucosidase [Halomonas sp. H11],3WY2_A Crystal structure of alpha-glucosidase in complex with glucose [Halomonas sp. H11],3WY2_B Crystal structure of alpha-glucosidase in complex with glucose [Halomonas sp. H11]
3WY3_A 5.17e-94 11 477 7 459
Crystalstructure of alpha-glucosidase mutant D202N in complex with glucose and glycerol [Halomonas sp. H11],3WY3_B Crystal structure of alpha-glucosidase mutant D202N in complex with glucose and glycerol [Halomonas sp. H11]
7VOH_A 2.37e-92 11 475 7 453
ChainA, alpha-glucosidase QsGH13 [Qipengyuania seohaensis],7VOH_B Chain B, alpha-glucosidase QsGH13 [Qipengyuania seohaensis]
6AAV_A 5.04e-88 3 476 4 462
Crystalstructure of alpha-glucosyl transfer enzyme, XgtA at 1.72 angstrom resolution [Xanthomonas campestris],6AAV_B Crystal structure of alpha-glucosyl transfer enzyme, XgtA at 1.72 angstrom resolution [Xanthomonas campestris]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q9Z3R8 6.69e-91 3 443 10 438
Probable alpha-glucosidase OS=Rhizobium meliloti (strain 1021) OX=266834 GN=aglA PE=3 SV=2
Q45101 8.06e-90 10 481 3 481
Oligo-1,6-glucosidase OS=Weizmannia coagulans OX=1398 GN=malL PE=3 SV=1
P29094 1.36e-89 11 491 5 489
Oligo-1,6-glucosidase OS=Parageobacillus thermoglucosidasius OX=1426 GN=malL PE=1 SV=1
O16099 2.37e-88 2 443 32 469
Maltase 2 OS=Drosophila virilis OX=7244 GN=Mal-B2 PE=3 SV=2
Q59905 2.06e-84 10 476 4 457
Glucan 1,6-alpha-glucosidase OS=Streptococcus dysgalactiae subsp. equisimilis OX=119602 GN=dexB PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.999697 0.000349 0.000005 0.000001 0.000000 0.000001

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001509_00890.