logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001525_01660

You are here: Home > Sequence: MGYG000001525_01660

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Paenibacillus_A rubinfantis
Lineage Bacteria; Firmicutes; Bacilli; Paenibacillales; Paenibacillaceae; Paenibacillus_A; Paenibacillus_A rubinfantis
CAZyme ID MGYG000001525_01660
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
685 MGYG000001525_17|CGC17 80034.84 7.0303
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001525 5369528 Isolate not provided not provided
Gene Location Start: 716633;  End: 718690  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001525_01660.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 416 526 2.1e-21 0.6647058823529411

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd04186 GT_2_like_c 6.64e-34 417 627 1 164
Subfamily of Glycosyltransferase Family GT2 of unknown function. GT-2 includes diverse families of glycosyltransferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. These are enzymes that catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. Glycosyltransferases have been classified into more than 90 distinct sequence based families.
COG1216 GT2 1.93e-28 416 659 6 254
Glycosyltransferase, GT2 family [Carbohydrate transport and metabolism].
pfam00535 Glycos_transf_2 1.56e-21 416 517 1 103
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 8.37e-20 417 531 1 116
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
cd06423 CESA_like 1.31e-16 417 597 1 178
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AUB55815.1 1.29e-135 1 683 1 852
AWX32257.1 9.33e-82 384 684 1494 1793
ABC56892.1 3.42e-75 394 680 799 1082
ACM59219.1 2.05e-73 381 669 398 701
SDS94867.1 8.69e-71 417 663 8 256

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q57287 8.78e-10 416 514 8 107
Uncharacterized glycosyltransferase HI_1578 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_1578 PE=3 SV=1
P39614 1.43e-06 416 612 4 184
Uncharacterized glycosyltransferase YwdF OS=Bacillus subtilis (strain 168) OX=224308 GN=ywdF PE=3 SV=1
O34319 2.06e-06 416 515 8 111
Uncharacterized glycosyltransferase YkcC OS=Bacillus subtilis (strain 168) OX=224308 GN=ykcC PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000073 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001525_01660.