logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001624_00793

You are here: Home > Sequence: MGYG000001624_00793

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Proteus cibarius
Lineage Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacterales; Enterobacteriaceae; Proteus; Proteus cibarius
CAZyme ID MGYG000001624_00793
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
259 29917.12 8.7194
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001624 3841359 MAG China Asia
Gene Location Start: 7794;  End: 8573  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.-

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 8 134 4.2e-19 0.7764705882352941

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd02511 Beta4Glucosyltransferase 9.74e-87 6 233 1 229
UDP-glucose LOS-beta-1,4 glucosyltransferase is required for biosynthesis of lipooligosaccharide. UDP-glucose: lipooligosaccharide (LOS) beta-1-4-glucosyltransferase catalyzes the addition of the first residue, glucose, of the lacto-N-neotetrase structure to HepI of the LOS inner core. LOS is the major constituent of the outer leaflet of the outer membrane of gram-positive bacteria. It consists of a short oligosaccharide chain of variable composition (alpha chain) attached to a branched inner core which is lined in turn to lipid A. Beta 1,4 glucosyltransferase is required to attach the alpha chain to the inner core.
COG0463 WcaA 5.49e-20 4 253 2 260
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam00535 Glycos_transf_2 2.63e-19 8 129 1 132
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
cd00761 Glyco_tranf_GTA_type 6.27e-19 9 142 1 151
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
PRK13915 PRK13915 1.31e-11 3 139 29 178
putative glucosyl-3-phosphoglycerate synthase; Provisional

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QJW49413.1 2.24e-190 1 259 1 259
ATM98906.1 2.24e-190 1 259 1 259
QQP23908.1 2.40e-185 1 259 1 259
QPB77901.1 2.40e-185 1 259 1 259
QIF96561.1 1.98e-184 1 259 1 259

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
3F1Y_A 3.09e-07 7 139 96 242
Mannosyl-3-phosphoglyceratesynthase from Rubrobacter xylanophilus [synthetic construct],3F1Y_C Mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus [synthetic construct],3KIA_A Crystal structure of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus [synthetic construct],3KIA_C Crystal structure of mannosyl-3-phosphoglycerate synthase from Rubrobacter xylanophilus [synthetic construct],3O3P_A Crystal structure of R. xylanophilus MpgS in complex with GDP-Mannose [Rubrobacter xylanophilus],3O3P_B Crystal structure of R. xylanophilus MpgS in complex with GDP-Mannose [Rubrobacter xylanophilus]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q54435 9.93e-121 1 252 1 252
Lipopolysaccharide core biosynthesis glycosyltransferase KdtX OS=Serratia marcescens OX=615 GN=kdtX PE=3 SV=1
Q9XC90 1.87e-116 4 251 2 249
Lipopolysaccharide core biosynthesis glycosyltransferase WaaE OS=Klebsiella pneumoniae OX=573 GN=waaE PE=3 SV=1
P44029 2.21e-80 7 252 4 251
Uncharacterized glycosyltransferase HI_0653 OS=Haemophilus influenzae (strain ATCC 51907 / DSM 11121 / KW20 / Rd) OX=71421 GN=HI_0653 PE=3 SV=1
Q9R9M9 2.65e-21 7 245 7 257
Lipopolysaccharide core biosynthesis glycosyltransferase LpsC OS=Rhizobium meliloti (strain 1021) OX=266834 GN=lpsC PE=3 SV=2
Q1RJ60 2.78e-20 4 251 6 263
Uncharacterized glycosyltransferase RBE_0523 OS=Rickettsia bellii (strain RML369-C) OX=336407 GN=RBE_0523 PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000030 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001624_00793.