logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001647_00685

You are here: Home > Sequence: MGYG000001647_00685

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS1781 sp900553695
Lineage Bacteria; Firmicutes_A; Clostridia; TANB77; CAG-508; UMGS1781; UMGS1781 sp900553695
CAZyme ID MGYG000001647_00685
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
351 MGYG000001647_14|CGC1 40777.72 9.1873
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001647 1184465 MAG United States North America
Gene Location Start: 17095;  End: 18150  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001647_00685.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 173 313 2.5e-16 0.85625

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 5.76e-20 83 338 95 359
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 1.39e-17 66 351 98 381
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03817 GT4_UGDG-like 5.67e-16 111 332 129 360
UDP-Glc:1,2-diacylglycerol 3-a-glucosyltransferase and similar proteins. This family is most closely related to the GT1 family of glycosyltransferases. UDP-glucose-diacylglycerol glucosyltransferase (EC 2.4.1.337, UGDG; also known as 1,2-diacylglycerol 3-glucosyltransferase) catalyzes the transfer of glucose from UDP-glucose to 1,2-diacylglycerol forming 3-D-glucosyl-1,2-diacylglycerol.
cd03820 GT4_AmsD-like 5.15e-13 121 338 138 347
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.
cd03811 GT4_GT28_WabH-like 3.41e-11 60 334 75 348
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ALX10015.1 1.17e-107 1 346 1 347
ANV77789.1 1.17e-107 1 346 1 347
ADU75980.1 1.17e-107 1 346 1 347
ABN53541.1 1.17e-107 1 346 1 347
QPI81520.1 3.69e-105 1 346 1 341

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2F9F_A 1.00e-06 175 331 30 177
CrystalStructure of the Putative Mannosyl Transferase (wbaZ-1)from Archaeoglobus fulgidus, Northeast Structural Genomics Target GR29A. [Archaeoglobus fulgidus DSM 4304]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q58469 8.76e-08 111 334 149 372
Uncharacterized glycosyltransferase MJ1069 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1069 PE=3 SV=1
P71243 4.97e-06 167 308 221 364
Putative colanic acid biosynthesis glycosyltransferase WcaL OS=Escherichia coli (strain K12) OX=83333 GN=wcaL PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000065 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001647_00685.