logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001689_00977

You are here: Home > Sequence: MGYG000001689_00977

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Blautia coccoides
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Blautia; Blautia coccoides
CAZyme ID MGYG000001689_00977
CAZy Family GH13
CAZyme Description Glucosylglycerate phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
560 MGYG000001689_3|CGC2 63807.35 4.9254
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001689 6086770 Isolate United States North America
Gene Location Start: 35304;  End: 36986  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001689_00977.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH13 83 423 6.7e-143 0.9941690962099126

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd11343 AmyAc_Sucrose_phosphorylase-like 0.0 47 491 1 445
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11356 AmyAc_Sucrose_phosphorylase-like_1 0.0 45 501 1 458
Alpha amylase catalytic domain found in sucrose phosphorylase-like proteins (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
cd11355 AmyAc_Sucrose_phosphorylase 1.14e-81 52 485 6 427
Alpha amylase catalytic domain found in sucrose phosphorylase (also called sucrose glucosyltransferase, disaccharide glucosyltransferase, and sucrose-phosphate alpha-D glucosyltransferase). Sucrose phosphorylase is a bacterial enzyme that catalyzes the phosphorolysis of sucrose to yield glucose-1-phosphate and fructose. These enzymes do not have the conserved calcium ion present in other alpha amylase family enzymes. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.
TIGR03852 sucrose_gtfA 5.97e-68 51 523 4 463
sucrose phosphorylase. In the forward direction, this enzyme uses phosphate to cleave sucrose into D-fructose + alpha-D-glucose 1-phosphate. Characterized representatives from Streptococcus mutans and Bifidobacterium adolescentis represent well-separated branches of a molecular phylogenetic tree. In S. mutans, the region including this gene has been associated with neighboring transporter genes and multiple sugar metabolism.
cd11324 AmyAc_Amylosucrase 2.56e-62 82 485 100 536
Alpha amylase catalytic domain found in Amylosucrase. Amylosucrase is a glucosyltransferase that catalyzes the transfer of a D-glucopyranosyl moiety from sucrose onto an acceptor molecule. When the acceptor is another saccharide, only alpha-1,4 linkages are produced. Unlike most amylopolysaccharide synthases, it does not require any alpha-D-glucosyl nucleoside diphosphate substrate. In the presence of glycogen it catalyzes the transfer of a D-glucose moiety onto a glycogen branch, but in its absence, it hydrolyzes sucrose and synthesizes polymers, smaller maltosaccharides, and sucrose isoforms. The Alpha-amylase family comprises the largest family of glycoside hydrolases (GH), with the majority of enzymes acting on starch, glycogen, and related oligo- and polysaccharides. These proteins catalyze the transformation of alpha-1,4 and alpha-1,6 glucosidic linkages with retention of the anomeric center. The protein is described as having 3 domains: A, B, C. A is a (beta/alpha) 8-barrel; B is a loop between the beta 3 strand and alpha 3 helix of A; C is the C-terminal extension characterized by a Greek key. The majority of the enzymes have an active site cleft found between domains A and B where a triad of catalytic residues (Asp, Glu and Asp) performs catalysis. Other members of this family have lost the catalytic activity as in the case of the human 4F2hc, or only have 2 residues that serve as the catalytic nucleophile and the acid/base, such as Thermus A4 beta-galactosidase with 2 Glu residues (GH42) and human alpha-galactosidase with 2 Asp residues (GH31). The family members are quite extensive and include: alpha amylase, maltosyltransferase, cyclodextrin glycotransferase, maltogenic amylase, neopullulanase, isoamylase, 1,4-alpha-D-glucan maltotetrahydrolase, 4-alpha-glucotransferase, oligo-1,6-glucosidase, amylosucrase, sucrose phosphorylase, and amylomaltase.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QIB55909.1 0.0 1 560 1 560
QMW76223.1 0.0 1 560 1 560
QUH28797.1 2.68e-216 8 560 5 553
AUD62908.1 1.35e-204 45 557 38 552
QST01839.1 1.61e-201 33 559 6 537

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
6S9V_A 1.50e-48 52 488 23 453
Crystalstructure of sucrose 6F-phosphate phosphorylase from Thermoanaerobacter thermosaccharolyticum [Thermoanaerobacterium thermosaccharolyticum DSM 571],6S9V_B Crystal structure of sucrose 6F-phosphate phosphorylase from Thermoanaerobacter thermosaccharolyticum [Thermoanaerobacterium thermosaccharolyticum DSM 571]
4AYS_A 3.13e-43 74 557 112 644
TheStructure of Amylosucrase from D. radiodurans [Deinococcus radiodurans]
1R7A_A 1.78e-40 52 447 7 403
SucrosePhosphorylase from Bifidobacterium adolescentis [Bifidobacterium adolescentis],1R7A_B Sucrose Phosphorylase from Bifidobacterium adolescentis [Bifidobacterium adolescentis]
3UCQ_A 2.99e-40 67 548 110 627
Crystalstructure of amylosucrase from Deinococcus geothermalis [Deinococcus geothermalis DSM 11300],3UER_A Crystal structure of amylosucrase from Deinococcus geothermalis in complex with turanose [Deinococcus geothermalis DSM 11300]
2GDU_A 4.59e-40 52 447 7 403
E232Qmutant of sucrose phosphorylase from BIFIDOBACTERIUM ADOLESCENTIS in complex with sucrose [Bifidobacterium adolescentis],2GDU_B E232Q mutant of sucrose phosphorylase from BIFIDOBACTERIUM ADOLESCENTIS in complex with sucrose [Bifidobacterium adolescentis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
D7BAR0 1.79e-167 37 557 39 553
Glucosylglycerate phosphorylase OS=Meiothermus silvanus (strain ATCC 700542 / DSM 9946 / VI-R2) OX=526227 GN=Mesil_0665 PE=1 SV=1
P76041 7.54e-165 39 558 38 559
Glucosylglycerate phosphorylase OS=Escherichia coli (strain K12) OX=83333 GN=ycjM PE=1 SV=2
G0GBS4 8.33e-155 45 552 52 561
Glucosylglycerate phosphorylase OS=Spirochaeta thermophila (strain ATCC 700085 / DSM 6578 / Z-1203) OX=869211 GN=Spith_0877 PE=1 SV=1
P10249 1.16e-53 50 520 7 464
Sucrose phosphorylase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=gtfA PE=1 SV=4
Q59495 1.79e-48 47 459 4 411
Sucrose phosphorylase OS=Leuconostoc mesenteroides OX=1245 PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000069 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001689_00977.