logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001706_00394

You are here: Home > Sequence: MGYG000001706_00394

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Campylobacter_A curvus
Lineage Bacteria; Campylobacterota; Campylobacteria; Campylobacterales; Campylobacteraceae; Campylobacter_A; Campylobacter_A curvus
CAZyme ID MGYG000001706_00394
CAZy Family GT4
CAZyme Description D-inositol-3-phosphate glycosyltransferase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
343 MGYG000001706_1|CGC1 38858.29 9.9196
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001706 1971264 Isolate South Africa Africa
Gene Location Start: 406257;  End: 407288  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001706_00394.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 176 310 1.2e-22 0.9

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03801 GT4_PimA-like 3.97e-43 3 339 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
cd03811 GT4_GT28_WabH-like 2.52e-34 3 327 1 351
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
COG0438 RfaB 1.39e-28 1 343 1 379
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03809 GT4_MtfB-like 1.47e-28 3 336 1 362
glycosyltransferases MtfB, WbpX, and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. MtfB (mannosyltransferase B) in E. coli has been shown to direct the growth of the O9-specific polysaccharide chain. It transfers two mannoses into the position 3 of the previously synthesized polysaccharide.
cd03819 GT4_WavL-like 2.60e-26 7 323 2 337
Vibrio cholerae WavL and similar sequences. This family is most closely related to the GT4 family of glycosyltransferases. WavL in Vibrio cholerae has been shown to be involved in the biosynthesis of the lipopolysaccharide core.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
EAU00970.1 1.21e-243 1 343 1 343
QKF60698.1 2.30e-232 1 343 1 343
QPH98961.1 2.67e-179 1 342 1 342
QPI00757.1 2.67e-179 1 342 1 342
QPH83977.1 7.63e-179 1 342 1 342

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
7MI0_A 1.97e-11 119 343 153 394
ChainA, Glycosyltransferase [Rickettsia africae ESF-5]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q0P9C7 2.08e-12 104 338 131 363
N-acetylgalactosamine-N,N'-diacetylbacillosaminyl-diphospho-undecaprenol 4-alpha-N-acetylgalactosaminyltransferase OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) OX=192222 GN=pglJ PE=1 SV=1
Q59002 1.88e-10 120 343 151 386
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
C4LLD6 7.00e-08 111 343 186 436
D-inositol 3-phosphate glycosyltransferase OS=Corynebacterium kroppenstedtii (strain DSM 44385 / JCM 11950 / CIP 105744 / CCUG 35717) OX=645127 GN=mshA PE=3 SV=1
P39862 1.91e-07 105 310 125 341
Capsular polysaccharide biosynthesis glycosyltransferase CapM OS=Staphylococcus aureus OX=1280 GN=capM PE=3 SV=1
A1VC53 7.27e-07 158 283 280 413
Glycogen synthase OS=Desulfovibrio vulgaris subsp. vulgaris (strain DP4) OX=391774 GN=glgA PE=3 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000047 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001706_00394.