logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001910_01658

You are here: Home > Sequence: MGYG000001910_01658

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Duncaniella dubosii
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; Duncaniella; Duncaniella dubosii
CAZyme ID MGYG000001910_01658
CAZy Family GT2
CAZyme Description Hyaluronan synthase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
265 MGYG000001910_21|CGC1 30450.04 9.1189
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001910 3154435 MAG Denmark Europe
Gene Location Start: 12528;  End: 13325  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001910_01658.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 5 126 4.4e-21 0.7058823529411765

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd06420 GT2_Chondriotin_Pol_N 1.61e-88 5 231 1 182
N-terminal domain of Chondroitin polymerase functions as a GalNAc transferase. Chondroitin polymerase is a two domain, bi-functional protein. The N-terminal domain functions as a GalNAc transferase. The bacterial chondroitin polymerase catalyzes elongation of the chondroitin chain by alternatively transferring the GlcUA and GalNAc moiety from UDP-GlcUA and UDP-GalNAc to the non-reducing ends of the chondroitin chain. The enzyme consists of N-terminal and C-terminal domains in which the two active sites catalyze the addition of GalNAc and GlcUA, respectively. Chondroitin chains range from 40 to over 100 repeating units of the disaccharide. Sulfated chondroitins are involved in the regulation of various biological functions such as central nervous system development, wound repair, infection, growth factor signaling, and morphogenesis, in addition to its conventional structural roles. In Caenorhabditis elegans, chondroitin is an essential factor for the worm to undergo cytokinesis and cell division. Chondroitin is synthesized as proteoglycans, sulfated and secreted to the cell surface or extracellular matrix.
cd00761 Glyco_tranf_GTA_type 2.93e-19 6 112 2 104
Glycosyltransferase family A (GT-A) includes diverse families of glycosyl transferases with a common GT-A type structural fold. Glycosyltransferases (GTs) are enzymes that synthesize oligosaccharides, polysaccharides, and glycoconjugates by transferring the sugar moiety from an activated nucleotide-sugar donor to an acceptor molecule, which may be a growing oligosaccharide, a lipid, or a protein. Based on the stereochemistry of the donor and acceptor molecules, GTs are classified as either retaining or inverting enzymes. To date, all GT structures adopt one of two possible folds, termed GT-A fold and GT-B fold. This hierarchy includes diverse families of glycosyl transferases with a common GT-A type structural fold, which has two tightly associated beta/alpha/beta domains that tend to form a continuous central sheet of at least eight beta-strands. The majority of the proteins in this superfamily are Glycosyltransferase family 2 (GT-2) proteins. But it also includes families GT-43, GT-6, GT-8, GT13 and GT-7; which are evolutionarily related to GT-2 and share structure similarities.
pfam00535 Glycos_transf_2 1.43e-17 6 153 3 148
Glycosyl transferase family 2. Diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl- galactosamine, GDP-mannose or CDP-abequose, to a range of substrates including cellulose, dolichol phosphate and teichoic acids.
COG0463 WcaA 8.67e-16 1 248 3 246
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
pfam02709 Glyco_transf_7C 2.02e-14 158 231 1 75
N-terminal domain of galactosyltransferase. This is the N-terminal domain of a family of galactosyltransferases from a wide range of Metazoa with three related galactosyltransferases activities, all three of which are possessed by one sequence in some cases. EC:2.4.1.90, N-acetyllactosamine synthase; EC:2.4.1.38, Beta-N-acetylglucosaminyl-glycopeptide beta-1,4- galactosyltransferase; and EC:2.4.1.22 Lactose synthase. Note that N-acetyllactosamine synthase is a component of Lactose synthase along with alpha-lactalbumin, in the absence of alpha-lactalbumin EC:2.4.1.90 is the catalyzed reaction.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD43587.1 3.74e-201 1 265 1 265
QUU05289.1 2.57e-80 1 264 1 264
CBW20784.1 3.64e-80 1 264 1 264
BAD46976.1 3.64e-80 1 264 1 264
AKA50337.1 3.64e-80 1 264 1 264

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2Z86_A 2.46e-15 3 241 95 337
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_C Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli],2Z86_D Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GlcUA and UDP [Escherichia coli]
2Z87_A 2.46e-15 3 241 94 336
Crystalstructure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli],2Z87_B Crystal structure of chondroitin polymerase from Escherichia coli strain K4 (K4CP) complexed with UDP-GalNAc and UDP [Escherichia coli]
1H7L_A 3.10e-06 2 100 2 103
dTDP-MAGNESIUMCOMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1H7Q_A dTDP-MANGANESE COMPLEX OF SPSA FROM BACILLUS SUBTILIS [Bacillus subtilis],1QG8_A Native (Magnesium-Containing) Spsa From Bacillus Subtilis [Bacillus subtilis],1QGQ_A Udp-manganese Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis],1QGS_A Udp-Magnesium Complex Of Spsa From Bacillus Subtilis [Bacillus subtilis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q7BLV3 2.55e-15 3 215 160 381
Hyaluronan synthase OS=Pasteurella multocida OX=747 GN=hyaD PE=1 SV=2
Q8L0V4 1.40e-14 3 241 152 394
Chondroitin synthase OS=Escherichia coli OX=562 GN=kfoC PE=1 SV=1
Q15JF5 2.00e-11 3 216 42 260
Validoxylamine A glucosyltransferase OS=Streptomyces hygroscopicus subsp. limoneus OX=264445 GN=vldK PE=3 SV=1
H2K893 3.72e-10 3 216 11 229
Validoxylamine A glucosyltransferase OS=Streptomyces hygroscopicus subsp. jinggangensis (strain 5008) OX=1133850 GN=valG PE=1 SV=1
Q0P9C6 5.75e-08 2 175 3 176
GalNAc(5)-diNAcBac-PP-undecaprenol beta-1,3-glucosyltransferase OS=Campylobacter jejuni subsp. jejuni serotype O:2 (strain ATCC 700819 / NCTC 11168) OX=192222 GN=pglI PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000043 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001910_01658.