logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001931_02509

You are here: Home > Sequence: MGYG000001931_02509

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species CAG-279 sp900548875
Lineage Bacteria; Bacteroidota; Bacteroidia; Bacteroidales; Muribaculaceae; CAG-279; CAG-279 sp900548875
CAZyme ID MGYG000001931_02509
CAZy Family GT4
CAZyme Description Glycosyltransferase Gtf1
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
406 MGYG000001931_68|CGC1 45935.26 8.8327
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001931 3207508 MAG Denmark Europe
Gene Location Start: 1348;  End: 2568  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000001931_02509.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT4 232 372 8.1e-24 0.88125

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd03825 GT4_WcaC-like 2.23e-87 1 406 1 364
putative colanic acid biosynthesis glycosyl transferase WcaC and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. Escherichia coli WcaC has been predicted to function in colanic acid biosynthesis. WcfI in Bacteroides fragilis has been shown to be involved in the capsular polysaccharide biosynthesis.
cd03801 GT4_PimA-like 4.23e-42 2 404 1 366
phosphatidyl-myo-inositol mannosyltransferase. This family is most closely related to the GT4 family of glycosyltransferases and named after PimA in Propionibacterium freudenreichii, which is involved in the biosynthesis of phosphatidyl-myo-inositol mannosides (PIM) which are early precursors in the biosynthesis of lipomannans (LM) and lipoarabinomannans (LAM), and catalyzes the addition of a mannosyl residue from GDP-D-mannose (GDP-Man) to the position 2 of the carrier lipid phosphatidyl-myo-inositol (PI) to generate a phosphatidyl-myo-inositol bearing an alpha-1,2-linked mannose residue (PIM1). Glycosyltransferases catalyze the transfer of sugar moieties from activated donor molecules to specific acceptor molecules, forming glycosidic bonds. The acceptor molecule can be a lipid, a protein, a heterocyclic compound, or another carbohydrate residue. This group of glycosyltransferases is most closely related to the previously defined glycosyltransferase family 1 (GT1). The members of this family may transfer UDP, ADP, GDP, or CMP linked sugars. The diverse enzymatic activities among members of this family reflect a wide range of biological functions. The protein structure available for this family has the GTB topology, one of the two protein topologies observed for nucleotide-sugar-dependent glycosyltransferases. GTB proteins have distinct N- and C- terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility. The members of this family are found mainly in certain bacteria and archaea.
COG0438 RfaB 2.77e-30 1 406 3 377
Glycosyltransferase involved in cell wall bisynthesis [Cell wall/membrane/envelope biogenesis].
cd03811 GT4_GT28_WabH-like 3.55e-30 2 369 1 322
family 4 and family 28 glycosyltransferases similar to Klebsiella WabH. This family is most closely related to the GT1 family of glycosyltransferases. WabH in Klebsiella pneumoniae has been shown to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the cellular outer core.
cd03820 GT4_AmsD-like 3.56e-30 2 400 1 350
amylovoran biosynthesis glycosyltransferase AmsD and similar proteins. This family is most closely related to the GT4 family of glycosyltransferases. AmSD in Erwinia amylovora has been shown to be involved in the biosynthesis of amylovoran, the acidic exopolysaccharide acting as a virulence factor. This enzyme may be responsible for the formation of galactose alpha-1,6 linkages in amylovoran.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
QCD36841.1 6.33e-136 1 406 1 413
QCP72361.1 7.66e-115 2 406 19 430
QCD38673.1 7.66e-115 2 406 19 430
QCD41807.1 1.92e-112 2 406 23 434
QDO68538.1 7.96e-110 1 406 1 417

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
C0ZUT0 3.14e-07 234 405 227 409
D-inositol 3-phosphate glycosyltransferase OS=Rhodococcus erythropolis (strain PR4 / NBRC 100887) OX=234621 GN=mshA PE=3 SV=1
P71237 9.06e-07 1 198 1 205
Putative colanic acid biosynthesis glycosyl transferase WcaC OS=Escherichia coli (strain K12) OX=83333 GN=wcaC PE=4 SV=2
C7R101 2.93e-06 236 396 234 405
D-inositol 3-phosphate glycosyltransferase OS=Jonesia denitrificans (strain ATCC 14870 / DSM 20603 / BCRC 15368 / CIP 55.134 / JCM 11481 / NBRC 15587 / NCTC 10816 / Prevot 55134) OX=471856 GN=mshA PE=3 SV=1
Q59002 3.62e-06 219 404 194 382
Uncharacterized glycosyltransferase MJ1607 OS=Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440) OX=243232 GN=MJ1607 PE=3 SV=1
A7TZT2 5.41e-06 219 365 244 390
Mannosylfructose-phosphate synthase OS=Agrobacterium fabrum (strain C58 / ATCC 33970) OX=176299 GN=mfpsA PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000057 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001931_02509.