logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000001988_02834

You are here: Home > Sequence: MGYG000001988_02834

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Marvinbryantia sp900550755
Lineage Bacteria; Firmicutes_A; Clostridia; Lachnospirales; Lachnospiraceae; Marvinbryantia; Marvinbryantia sp900550755
CAZyme ID MGYG000001988_02834
CAZy Family GT35
CAZyme Description Maltodextrin phosphorylase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
755 MGYG000001988_30|CGC1 85298.21 5.378
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000001988 3989920 MAG Spain Europe
Gene Location Start: 47684;  End: 49951  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.1

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT35 79 753 4.2e-221 0.9955489614243324

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
PRK14986 PRK14986 0.0 47 753 70 810
glycogen phosphorylase; Provisional
COG0058 GlgP 0.0 4 754 12 749
Glucan phosphorylase [Carbohydrate transport and metabolism].
PRK14985 PRK14985 0.0 25 751 38 794
maltodextrin phosphorylase; Provisional
TIGR02093 P_ylase 0.0 7 753 3 794
glycogen/starch/alpha-glucan phosphorylases. This family consists of phosphorylases. Members use phosphate to break alpha 1,4 linkages between pairs of glucose residues at the end of long glucose polymers, releasing alpha-D-glucose 1-phosphate. The nomenclature convention is to preface the name according to the natural substrate, as in glycogen phosphorylase, starch phosphorylase, maltodextrin phosphorylase, etc. Name differences among these substrates reflect differences in patterns of branching with alpha 1,6 linkages. Members include allosterically regulated and unregulated forms. A related family, TIGR02094, contains examples known to act well on particularly small alpha 1,4 glucans, as may be found after import from exogenous sources. [Energy metabolism, Biosynthesis and degradation of polysaccharides]
cd04300 GT35_Glycogen_Phosphorylase 0.0 3 753 2 795
glycogen phosphorylase and similar proteins. This is a family of oligosaccharide phosphorylases. It includes yeast and mammalian glycogen phosphorylases, plant starch/glucan phosphorylase, as well as the maltodextrin phosphorylases of bacteria. The members of this family catalyze the breakdown of oligosaccharides into glucose-1-phosphate units. They are important allosteric enzymes in carbohydrate metabolism. The allosteric control mechanisms of yeast and mammalian members of this family are different from that of bacterial members. The members of this family belong to the GT-B structural superfamily of glycoslytransferases, which have characteristic N- and C-terminal domains each containing a typical Rossmann fold. The two domains have high structural homology despite minimal sequence homology. The large cleft that separates the two domains includes the catalytic center and permits a high degree of flexibility.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
CBL23581.1 0.0 1 755 1 755
ADD61666.1 0.0 9 755 12 758
CCG34911.1 0.0 9 755 7 753
AXB27758.1 0.0 9 755 7 753
CBL01526.1 0.0 9 755 7 753

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4L22_A 9.21e-303 17 752 20 756
Crystalstructure of putative glycogen phosphorylase from Streptococcus mutans [Streptococcus mutans UA159]
2C4M_A 9.37e-179 20 753 28 788
Starchphosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_B Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_C Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae],2C4M_D Starch phosphorylase: structural studies explain oxyanion-dependent kinetic stability and regulatory control. [Corynebacterium callunae]
1L5V_A 3.93e-168 18 751 27 792
CrystalStructure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5V_B Crystal Structure of the Maltodextrin Phosphorylase complexed with Glucose-1-phosphate [Escherichia coli],1L5W_A Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L5W_B Crystal Structure of the Maltodextrin Phosphorylase Complexed with the Products of the Enzymatic Reaction between Glucose-1-phosphate and Maltotetraose [Escherichia coli],1L6I_A Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],1L6I_B Crystal Structure of the Maltodextrin Phosphorylase complexed with the products of the enzymatic reaction between glucose-1-phosphate and maltopentaose [Escherichia coli],2ASV_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2ASV_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AV6_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AV6_B Chain B, Maltodextrin phosphorylase [Escherichia coli],2AW3_A X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AW3_B X-Ray studies on maltodextrin phosphorylase complexes: recognition of substrates and cathalitic mechanism of phosphorylase family [Escherichia coli],2AZD_A Chain A, Maltodextrin phosphorylase [Escherichia coli],2AZD_B Chain B, Maltodextrin phosphorylase [Escherichia coli]
1E4O_A 1.55e-167 18 751 27 792
Phosphorylaserecognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1E4O_B Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_A Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli],1QM5_B Phosphorylase recognition and phosphorylysis of its oligosaccharide substrate: answers to a long outstanding question [Escherichia coli]
5IKO_A 3.71e-166 47 751 84 829
Crystalstructure of human brain glycogen phosphorylase [Homo sapiens],5IKP_A Crystal structure of human brain glycogen phosphorylase bound to AMP [Homo sapiens]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P29849 6.38e-316 15 753 14 751
Maltodextrin phosphorylase OS=Streptococcus pneumoniae serotype 4 (strain ATCC BAA-334 / TIGR4) OX=170187 GN=malP PE=3 SV=2
P39123 8.32e-171 7 753 14 794
Glycogen phosphorylase OS=Bacillus subtilis (strain 168) OX=224308 GN=glgP PE=2 SV=1
Q3B7M9 1.24e-169 1 751 28 826
Glycogen phosphorylase, brain form OS=Bos taurus OX=9913 GN=PYGB PE=2 SV=3
Q5MIB6 1.74e-169 1 751 28 826
Glycogen phosphorylase, brain form OS=Ovis aries OX=9940 GN=PYGB PE=2 SV=3
P00490 3.12e-167 18 751 28 793
Maltodextrin phosphorylase OS=Escherichia coli (strain K12) OX=83333 GN=malP PE=1 SV=7

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000046 0.000000 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000001988_02834.