logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002047_00334

You are here: Home > Sequence: MGYG000002047_00334

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species UMGS902 sp003343845
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; CAG-272; UMGS902; UMGS902 sp003343845
CAZyme ID MGYG000002047_00334
CAZy Family GH31
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
1190 MGYG000002047_6|CGC1 127243.07 4.5555
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002047 2115875 MAG China Asia
Gene Location Start: 10064;  End: 13636  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002047_00334.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH31 562 818 1.5e-44 0.5807962529274004

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
pfam01055 Glyco_hydro_31 4.35e-56 448 993 2 442
Glycosyl hydrolases family 31. Glycosyl hydrolases are key enzymes of carbohydrate metabolism. Family 31 comprises of enzymes that are, or similar to, alpha- galactosidases.
COG1501 YicI 2.31e-48 428 1072 217 748
Alpha-glucosidase, glycosyl hydrolase family GH31 [Carbohydrate transport and metabolism].
cd06595 GH31_u1 8.78e-46 465 755 1 302
glycosyl hydrolase family 31 (GH31); uncharacterized subgroup. This family represents an uncharacterized GH31 enzyme subgroup found in bacteria and eukaryotes. Enzymes of the GH31 family possess a wide range of different hydrolytic activities including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein.
cd06598 GH31_transferase_CtsZ 2.86e-37 466 763 1 332
CtsZ (cyclic tetrasaccharide-synthesizing enzyme Z)-like. CtsZ is a bacterial 6-alpha-glucosyltransferase, first identified in Arthrobacter globiformis, that produces cyclic tetrasaccharides together with a closely related enzyme CtsY. CtsZ and CtsY both have a glycosyl hydrolase family 31 (GH31) catalytic domain; CtsY belongs to a different subfamily. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein.
cd06589 GH31 1.51e-33 475 718 10 241
glycosyl hydrolase family 31 (GH31). GH31 enzymes occur in prokaryotes, eukaryotes, and archaea with a wide range of hydrolytic activities, including alpha-glucosidase (glucoamylase and sucrase-isomaltase), alpha-xylosidase, 6-alpha-glucosyltransferase, 3-alpha-isomaltosyltransferase and alpha-1,4-glucan lyase. All GH31 enzymes cleave a terminal carbohydrate moiety from a substrate that varies considerably in size, depending on the enzyme, and may be either a starch or a glycoprotein. In most cases, the pyranose moiety recognized in subsite -1 of the substrate binding site is an alpha-D-glucose, though some GH31 family members show a preference for alpha-D-xylose. Several GH31 enzymes can accommodate both glucose and xylose and different levels of discrimination between the two have been observed. Most characterized GH31 enzymes are alpha-glucosidases. In mammals, GH31 members with alpha-glucosidase activity are implicated in at least three distinct biological processes. The lysosomal acid alpha-glucosidase (GAA) is essential for glycogen degradation and a deficiency or malfunction of this enzyme causes glycogen storage disease II, also known as Pompe disease. In the endoplasmic reticulum, alpha-glucosidase II catalyzes the second step in the N-linked oligosaccharide processing pathway that constitutes part of the quality control system for glycoprotein folding and maturation. The intestinal enzymes sucrase-isomaltase (SI) and maltase-glucoamylase (MGAM) play key roles in the final stage of carbohydrate digestion, making alpha-glucosidase inhibitors useful in the treatment of type 2 diabetes. GH31 alpha-glycosidases are retaining enzymes that cleave their substrates via an acid/base-catalyzed, double-displacement mechanism involving a covalent glycosyl-enzyme intermediate. Two aspartic acid residues have been identified as the catalytic nucleophile and the acid/base, respectively.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AIE84875.1 1.36e-114 400 1092 111 788
ARN57252.1 2.62e-82 400 1133 264 857
AQQ09813.1 3.46e-75 400 1122 264 845
BBF82563.1 1.76e-41 446 1064 246 931
QDH71261.1 2.09e-41 446 1077 295 1000

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
4B9Y_A 7.61e-30 407 900 193 712
CrystalStructure of Apo Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31 [Cellvibrio japonicus],4B9Z_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with Acarbose [Cellvibrio japonicus],4BA0_A Crystal Structure of Agd31B, alpha-transglucosylase, complexed with 5F-alpha-GlcF [Cellvibrio japonicus]
5I23_A 8.00e-30 407 900 170 689
CrystalStructure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF022 [Cellvibrio japonicus Ueda107],5I24_A Crystal Structure of Agd31B, alpha-transglucosylase in Glycoside Hydrolase Family 31, in complex with Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus Ueda107],5NPB_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPE_A Crystal Structure of cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with beta Cyclophellitol Aziridine probe KY358 [Cellvibrio japonicus Ueda107]
5NPC_A 3.18e-29 407 900 169 688
CrystalStructure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with unreacted alpha Cyclophellitol Cyclosulfate probe ME647 [Cellvibrio japonicus],5NPD_A Crystal Structure of D412N nucleophile mutant cjAgd31B (alpha-transglucosylase from Glycoside Hydrolase Family 31) in complex with alpha Cyclophellitol Aziridine probe CF021 [Cellvibrio japonicus]
7KMP_A 1.61e-23 464 1095 426 975
ChainA, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306],7KNC_A Chain A, Alpha-xylosidase [Xanthomonas citri pv. citri str. 306]
7WJ9_A 3.78e-21 444 836 184 591
ChainA, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJ9_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJA_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WJB_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_A Chain A, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_B Chain B, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_C Chain C, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_D Chain D, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_E Chain E, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363],7WLG_F Chain F, Alpha-xylosidase [Lactococcus lactis subsp. cremoris MG1363]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
B3PEE6 4.16e-29 407 900 193 712
Oligosaccharide 4-alpha-D-glucosyltransferase OS=Cellvibrio japonicus (strain Ueda107) OX=498211 GN=agd31B PE=1 SV=1
Q9F234 4.95e-20 446 845 232 662
Alpha-glucosidase 2 OS=Bacillus thermoamyloliquefaciens OX=1425 PE=3 SV=1
Q9P999 7.05e-19 446 801 192 570
Alpha-xylosidase OS=Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2) OX=273057 GN=xylS PE=1 SV=1
P79403 4.83e-16 648 811 610 767
Neutral alpha-glucosidase AB OS=Sus scrofa OX=9823 GN=GANAB PE=1 SV=1
Q8BHN3 2.48e-15 648 811 610 767
Neutral alpha-glucosidase AB OS=Mus musculus OX=10090 GN=Ganab PE=1 SV=1

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.369389 0.624677 0.004932 0.000362 0.000266 0.000365

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002047_00334.