logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002230_01340

You are here: Home > Sequence: MGYG000002230_01340

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Ruminococcus sp900545125
Lineage Bacteria; Firmicutes_A; Clostridia; Oscillospirales; Ruminococcaceae; Ruminococcus; Ruminococcus sp900545125
CAZyme ID MGYG000002230_01340
CAZy Family GH43
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
925 MGYG000002230_101|CGC1 101656.9 4.3606
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002230 2337720 MAG United States North America
Gene Location Start: 4012;  End: 6789  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 3.2.1.99

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH43 43 425 2.3e-107 0.9967741935483871
CBM13 585 721 3.3e-19 0.675531914893617
CBM13 729 879 1.8e-16 0.8138297872340425

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd18832 GH43_GsAbnA-like 4.04e-139 44 420 1 332
Glycosyl hydrolase family 43 protein such as Geobacillus stearothermophilus endo-alpha-1,5-L-arabinanase AbnA. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. It includes Geobacillus stearothermophilus T-6 NCIMB 40222 AbnA, Bacillus subtilis subsp. subtilis str. 168 (Abn2;YxiA;J3A;BSU39330) (Arb43B), and Thermotoga petrophila RKU-1 (AbnA;TpABN;Tpet_0637). These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
cd08998 GH43_Arb43a-like 1.73e-55 44 419 1 277
Glycosyl hydrolase family 43 protein such as Bacillus subtilis subsp. subtilis str. 168 endo-alpha-1,5-L-arabinanase Arb43A. This glycosyl hydrolase family 43 (GH43) subgroup belongs to the glycosyl hydrolase clan F (according to carbohydrate-active enzymes database (CAZY)) which includes family 43 (GH43) and 62 (GH62) families. GH43 are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. Many of these enzymes such as the Bacillus subtilis arabinanase Abn2, that hydrolyzes sugar beet arabinan (branched), linear alpha-1,5-L-arabinan and pectin, are different from other arabinases; they are organized into two different domains with a divalent metal cluster close to the catalytic residues to guarantee the correct protonation state of the catalytic residues and consequently the enzyme activity. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
COG3507 XynB2 9.29e-55 40 543 34 454
Beta-xylosidase [Carbohydrate transport and metabolism].
cd08988 GH43_ABN 2.17e-44 45 418 1 276
Glycosyl hydrolase family 43. This glycosyl hydrolase family 43 (GH43) subgroup includes mostly enzymes with alpha-L-arabinofuranosidase (ABF; EC 3.2.1.55) and endo-alpha-L-arabinanase (ABN; EC 3.2.1.99) activities. These are inverting enzymes (i.e. they invert the stereochemistry of the anomeric carbon atom of the substrate) that have an aspartate as the catalytic general base, a glutamate as the catalytic general acid and another aspartate that is responsible for pKa modulation and orienting the catalytic acid. The GH43 ABN enzymes hydrolyze alpha-1,5-L-arabinofuranoside linkages while the ABF enzymes cleave arabinose side chains so that the combined actions of these two enzymes reduce arabinan to L-arabinose and/or arabinooligosaccharides. These arabinan-degrading enzymes are important in the food industry for efficient production of L-arabinose from agricultural waste; L-arabinose is often used as a bioactive sweetener. A common structural feature of GH43 enzymes is a 5-bladed beta-propeller domain that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam16369 GH43_C 1.65e-31 429 534 1 106
C-terminal of Glycosyl hydrolases family 43. This is the C-terminal of Glycosyl hydrolases family 43. It is around 100 residues in length from various Bacteroides species. The function of this family is unknown.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
AEE64773.1 0.0 1 923 1 917
ADU22406.1 1.89e-297 16 777 7 751
BBF43826.1 2.49e-188 34 536 44 543
APC41808.1 1.72e-184 1 536 1 538
AOZ93014.1 4.19e-184 39 539 51 549

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
5HO9_A 2.94e-170 40 555 49 569
Structureof truncated AbnA (domains 1-3), a GH43 arabinanase from Geobacilllus stearothermophilus, in complex with arabinooctaose [Geobacillus stearothermophilus],5HO9_B Structure of truncated AbnA (domains 1-3), a GH43 arabinanase from Geobacilllus stearothermophilus, in complex with arabinooctaose [Geobacillus stearothermophilus]
5HO0_A 1.75e-167 40 555 49 569
Crystalstructure of AbnA (closed conformation), a GH43 extracellular arabinanase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5HO2_A Crystal structure of AbnA (open conformation), a GH43 extracellular arabinanase from Geobacillus stearothermophilus [Geobacillus stearothermophilus],5HOF_A Crystal structure of AbnA, a GH43 extracellular arabinanase from Geobacillus stearothermophilus, in complex with arabinopentaose [Geobacillus stearothermophilus],5HP6_A Structure of AbnA, a GH43 extracellular arabinanase from Geobacillus stearothermophilus (a new conformational state) [Geobacillus stearothermophilus]
2X8F_A 1.50e-89 42 536 34 469
Nativestructure of Endo-1,5-alpha-L-arabinanases from Bacillus subtilis [Bacillus subtilis],2X8F_B Native structure of Endo-1,5-alpha-L-arabinanases from Bacillus subtilis [Bacillus subtilis]
4COT_A 1.49e-88 42 536 34 469
Theimportance of the Abn2 calcium cluster in the endo-1,5- arabinanase activity from Bacillus subtilis [Bacillus subtilis subsp. subtilis str. 168]
2X8S_A 2.13e-88 42 536 34 469
CrystalStructure of the Abn2 D171A mutant in complex with arabinotriose [Bacillus subtilis],2X8S_B Crystal Structure of the Abn2 D171A mutant in complex with arabinotriose [Bacillus subtilis]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
P42293 8.00e-89 42 536 34 469
Extracellular endo-alpha-(1->5)-L-arabinanase 2 OS=Bacillus subtilis (strain 168) OX=224308 GN=abn2 PE=1 SV=2
A5IKD4 1.26e-83 44 539 30 471
Extracellular endo-alpha-(1->5)-L-arabinanase OS=Thermotoga petrophila (strain ATCC BAA-488 / DSM 13995 / JCM 10881 / RKU-1) OX=390874 GN=Tpet_0637 PE=1 SV=1
Q4X0A5 3.29e-10 40 403 53 348
Probable arabinan endo-1,5-alpha-L-arabinosidase B OS=Neosartorya fumigata (strain ATCC MYA-4609 / Af293 / CBS 101355 / FGSC A1100) OX=330879 GN=abnB PE=3 SV=2
B0XTS5 3.29e-10 40 403 53 348
Probable arabinan endo-1,5-alpha-L-arabinosidase B OS=Neosartorya fumigata (strain CEA10 / CBS 144.89 / FGSC A1163) OX=451804 GN=abnB PE=3 SV=2
A1DHW8 5.82e-10 44 403 57 348
Probable arabinan endo-1,5-alpha-L-arabinosidase B OS=Neosartorya fischeri (strain ATCC 1020 / DSM 3700 / CBS 544.65 / FGSC A1164 / JCM 1740 / NRRL 181 / WB 181) OX=331117 GN=abnB PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as SP

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
0.000521 0.994176 0.004677 0.000214 0.000192 0.000168

TMHMM  Annotations      help

There is no transmembrane helices in MGYG000002230_01340.