logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002386_01762

You are here: Home > Sequence: MGYG000002386_01762

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Lactiplantibacillus plantarum
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactiplantibacillus; Lactiplantibacillus plantarum
CAZyme ID MGYG000002386_01762
CAZy Family GT2
CAZyme Description hypothetical protein
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
434 49299.33 9.5441
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002386 3412302 Isolate China Asia
Gene Location Start: 1814633;  End: 1815937  Strand: -

Full Sequence      Download help

Enzyme Prediction      help

No EC number prediction in MGYG000002386_01762.

CAZyme Signature Domains help

Family Start End Evalue family coverage
GT2 44 277 5.2e-18 0.9739130434782609

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd06436 GlcNAc-1-P_transferase 7.36e-38 46 235 1 191
N-acetyl-glucosamine transferase is involved in the synthesis of Poly-beta-1,6-N-acetyl-D-glucosamine. N-acetyl-glucosamine transferase is responsible for the synthesis of bacteria Poly-beta-1,6-N-acetyl-D-glucosamine (PGA). Poly-beta-1,6-N-acetyl-D-glucosamine is a homopolymer that serves as an adhesion for the maintenance of biofilm structural stability in diverse eubacteria. N-acetyl-glucosamine transferase is the product of gene pgaC. Genetic analysis indicated that all four genes of the pgaABCD locus were required for the PGA production, pgaC being a glycosyltransferase.
COG1215 BcsA 4.80e-26 1 403 14 404
Glycosyltransferase, catalytic subunit of cellulose synthase and poly-beta-1,6-N-acetylglucosamine synthase [Cell motility].
cd06423 CESA_like 4.38e-22 46 235 1 180
CESA_like is the cellulose synthase superfamily. The cellulose synthase (CESA) superfamily includes a wide variety of glycosyltransferase family 2 enzymes that share the common characteristic of catalyzing the elongation of polysaccharide chains. The members include cellulose synthase catalytic subunit, chitin synthase, glucan biosynthesis protein and other families of CESA-like proteins. Cellulose synthase catalyzes the polymerization reaction of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues in plants, most algae, some bacteria and fungi, and even some animals. In bacteria, algae and lower eukaryotes, there is a second unrelated type of cellulose synthase (Type II), which produces acylated cellulose, a derivative of cellulose. Chitin synthase catalyzes the incorporation of GlcNAc from substrate UDP-GlcNAc into chitin, which is a linear homopolymer of beta-(1,4)-linked GlcNAc residues and Glucan Biosynthesis protein catalyzes the elongation of beta-1,2 polyglucose chains of Glucan.
cd06437 CESA_CaSu_A2 1.61e-12 48 279 7 231
Cellulose synthase catalytic subunit A2 (CESA2) is a catalytic subunit or a catalytic subunit substitute of the cellulose synthase complex. Cellulose synthase (CESA) catalyzes the polymerization reaction of cellulose using UDP-glucose as the substrate. Cellulose is an aggregate of unbranched polymers of beta-1,4-linked glucose residues, which is an abundant polysaccharide produced by plants and in varying degrees by several other organisms including algae, bacteria, fungi, and even some animals. Genomes from higher plants harbor multiple CESA genes. There are ten in Arabidopsis. At least three different CESA proteins are required to form a functional complex. In Arabidopsis, CESA1, 3 and 6 and CESA4, 7 and 8, are required for cellulose biosynthesis during primary and secondary cell wall formation. CESA2 is very closely related to CESA6 and is viewed as a prime substitute for CESA6. They functionally compensate each other. The cesa2 and cesa6 double mutant plants were significantly smaller, while the single mutant plants were almost normal.
cd06421 CESA_CelA_like 1.96e-12 105 282 63 232
CESA_CelA_like are involved in the elongation of the glucan chain of cellulose. Family of proteins related to Agrobacterium tumefaciens CelA and Gluconacetobacter xylinus BscA. These proteins are involved in the elongation of the glucan chain of cellulose, an aggregate of unbranched polymers of beta-1,4-linked glucose residues. They are putative catalytic subunit of cellulose synthase, which is a glycosyltransferase using UDP-glucose as the substrate. The catalytic subunit is an integral membrane protein with 6 transmembrane segments and it is postulated that the protein is anchored in the membrane at the N-terminal end.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
ARW35524.1 5.25e-316 1 434 1 434
AGL64166.2 5.25e-316 1 434 1 434
QAS29914.1 5.47e-316 1 434 2 435
ASZ32521.1 5.47e-316 1 434 2 435
AOB24080.1 5.47e-316 1 434 2 435

PDB Hits      help

has no PDB hit.

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
Q69L19 4.36e-06 48 301 239 490
Probable xyloglucan glycosyltransferase 2 OS=Oryza sativa subsp. japonica OX=39947 GN=CSLC2 PE=2 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000047 0.000001 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
2 24
307 329
341 363
383 402