logo
sublogo
You are browsing environment: HUMAN GUT
help

CAZyme Information: MGYG000002387_01598

You are here: Home > Sequence: MGYG000002387_01598

Basic Information | Genomic context | Full Sequence | Enzyme annotations |  CAZy signature domains |  CDD domains | CAZyme hits | PDB hits | Swiss-Prot hits | SignalP and Lipop annotations | TMHMM annotations

Basic Information help

Species Lactobacillus paragasseri
Lineage Bacteria; Firmicutes; Bacilli; Lactobacillales; Lactobacillaceae; Lactobacillus; Lactobacillus paragasseri
CAZyme ID MGYG000002387_01598
CAZy Family GH68
CAZyme Description Levansucrase
CAZyme Property
Protein Length CGC Molecular Weight Isoelectric Point
361 39204.74 4.9418
Genome Property
Genome Assembly ID Genome Size Genome Type Country Continent
MGYG000002387 2129154 Isolate South Korea Asia
Gene Location Start: 1597782;  End: 1598867  Strand: +

Full Sequence      Download help

Enzyme Prediction      help

EC 2.4.1.10 2.4.1.9

CAZyme Signature Domains help

Family Start End Evalue family coverage
GH68 3 235 8.1e-68 0.4844124700239808

CDD Domains      download full data without filtering help

Cdd ID Domain E-Value qStart qEnd sStart sEnd Domain Description
cd08997 GH68 7.00e-54 4 225 164 354
Glycosyl hydrolase family 68, includes levansucrase, beta-fructofuranosidase and inulosucrase. Glycosyl hydrolase family 68 (GH68) consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9), all of which use sucrose as their preferential donor substrate. Levansucrase, also known as beta-D-fructofuranosyl transferase, catalyzes the transfer of the sucrose fructosyl moiety to a growing levan chain. Similarly, inulosucrase catalyzes long inulin-type of fructans, and beta-fructofuranosidases create fructooligosaccharides (FOS). However, in the absence of high fructan/sucrose ratio, some GH68 enzymes can also use fructan as donor substrate. GH68 retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller. Biotechnological applications of these enzymes include use of inulin in inexpensive production of rich fructose syrups as well as use of FOS as health-promoting pre-biotics.
pfam02435 Glyco_hydro_68 1.68e-52 2 227 211 411
Levansucrase/Invertase. This Pfam family consists of the glycosyl hydrolase 68 family, including several bacterial levansucrase enzymes, and invertase from zymomonas.
cd08979 GH_J 2.40e-09 57 215 149 291
Glycosyl hydrolase families 32 and 68, which form the clan GH-J. This glycosyl hydrolase family clan J (according to carbohydrate-active enzymes database (CAZY)) includes family 32 (GH32) and 68 (GH68). GH32 enzymes include invertase (EC 3.2.1.26) and other other fructofuranosidases such as inulinase (EC 3.2.1.7), exo-inulinase (EC 3.2.1.80), levanase (EC 3.2.1.65), and transfructosidases such sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99), fructan:fructan 1-fructosyltransferase (EC 2.4.1.100), sucrose:fructan 6-fructosyltransferase (EC 2.4.1.10), fructan:fructan 6G-fructosyltransferase (EC 2.4.1.243) and levan fructosyltransferases (EC 2.4.1.-). The GH68 family consists of frucosyltransferases (FTFs) that include levansucrase (EC 2.4.1.10, also known as beta-D-fructofuranosyl transferase), beta-fructofuranosidase (EC 3.2.1.26) and inulosucrase (EC 2.4.1.9). GH32 and GH68 family enzymes are retaining enzymes (i.e. they retain the configuration at anomeric carbon atom of the substrate) and catalyze hydrolysis in two steps involving a covalent glycosyl enzyme intermediate: an aspartate located close to the N-terminus acts as the catalytic nucleophile and a glutamate acts as the general acid/base; a conserved aspartate residue in the Arg-Asp-Pro (RDP) motif stabilizes the transition state. A common structural feature of all these enzymes is a 5-bladed beta-propeller domain, similar to GH43, that contains the catalytic acid and catalytic base. A long V-shaped groove, partially enclosed at one end, forms a single extended substrate-binding surface across the face of the propeller.
pfam00746 Gram_pos_anchor 0.003 318 361 2 43
LPXTG cell wall anchor motif.

CAZyme Hits      help

Hit ID E-Value Query Start Query End Hit Start Hit End
VEF35911.1 3.36e-228 1 361 178 538
ACZ67287.1 2.67e-226 1 361 408 768
BBD48912.1 2.67e-226 1 361 408 768
QTQ39430.1 5.86e-213 1 361 388 758
AOG27122.1 3.16e-182 1 361 228 586

PDB Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
2YFS_A 4.52e-136 1 282 286 565
Crystalstructure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with sucrose [Lactobacillus johnsonii]
2YFR_A 4.52e-136 1 282 286 565
Crystalstructure of inulosucrase from Lactobacillus johnsonii NCC533 [Lactobacillus johnsonii],2YFT_A Crystal structure of inulosucrase from Lactobacillus johnsonii NCC533 in complex with 1-kestose [Lactobacillus johnsonii]
3OM6_A 2.29e-44 3 233 234 449
ChainA, Levansucrase [Priestia megaterium],3OM6_B Chain B, Levansucrase [Priestia megaterium],3OM6_C Chain C, Levansucrase [Priestia megaterium],3OM6_D Chain D, Levansucrase [Priestia megaterium]
3OM7_A 2.29e-44 3 233 234 449
ChainA, Levansucrase [Priestia megaterium],3OM7_B Chain B, Levansucrase [Priestia megaterium],3OM7_C Chain C, Levansucrase [Priestia megaterium],3OM7_D Chain D, Levansucrase [Priestia megaterium]
3OM5_A 2.29e-44 3 233 234 449
ChainA, Levansucrase [Priestia megaterium],3OM5_B Chain B, Levansucrase [Priestia megaterium],3OM5_C Chain C, Levansucrase [Priestia megaterium],3OM5_D Chain D, Levansucrase [Priestia megaterium]

Swiss-Prot Hits      download full data without filtering help

Hit ID E-Value Query Start Query End Hit Start Hit End Description
D3WYW0 5.34e-227 1 361 408 768
Levansucrase OS=Lactobacillus gasseri OX=1596 GN=levG PE=1 SV=1
Q74K42 5.55e-151 1 361 429 797
Inulosucrase OS=Lactobacillus johnsonii (strain CNCM I-12250 / La1 / NCC 533) OX=257314 GN=inuJ PE=1 SV=1
D3WYV9 1.29e-134 1 285 423 705
Inulosucrase OS=Lactobacillus gasseri OX=1596 GN=inuGB PE=1 SV=1
Q70XJ9 1.72e-119 1 284 470 754
Levansucrase OS=Fructilactobacillus sanfranciscensis OX=1625 GN=levS PE=1 SV=1
P11701 9.15e-109 1 283 404 679
Levansucrase OS=Streptococcus mutans serotype c (strain ATCC 700610 / UA159) OX=210007 GN=ftf PE=3 SV=2

SignalP and Lipop Annotations help

This protein is predicted as OTHER

Other SP_Sec_SPI LIPO_Sec_SPII TAT_Tat_SPI TATLIP_Sec_SPII PILIN_Sec_SPIII
1.000054 0.000026 0.000000 0.000000 0.000000 0.000000

TMHMM  Annotations      download full data without filtering help

start end
333 355